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1 Introduction

1.1 Polymers

1.1.1 What is a polymer?

Polymers are very much commonplace in the modern world, from natural rubber to familiar

synthetics such as acrylic, nylon, and different kinds of plastics, etcetera [1, 2]. They are of

particular interest to industry due to their broad range of applications and one of the most

fascinating materials for academic investigation. So what exactly is a polymer?

By definition, a polymer is a large molecule built from many covalently bonded units

(monomers). Based on the identity of those repeated monomers, polymers are generally

termed into homo or hetero groups. When all of the monomers are of the same type, the

polymer is called a homopolymer while a polymer comprising of blocks with different chem-

ical constitutions is referred to as a heteropolymer.

1.1.2 Polymer Architectures

Due to its simple structure and associated thermoplastic feature, polyethylene (PE) represents

one of the most frequently used polymers in industry [3]. Depending on its density and

degree of branching, PE can be used in the manufacture of many products such as plastic

packaging, human joint replacement components and for water and gas piping. PE is a long

chain polymer composed of carbon and hydrogen atoms arranged as shown in Fig. 1.1. It

can be melted to a liquid-like state that can be re-molded to form a variety of different forms

before returning to a solid state upon cooling.

The physical properties of polymers such as PE are strongly correlated to their underlying
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1. INTRODUCTION

Figure 1.1: Polyethylene monomer.

architectures [4–11]. In general PE architectures can be divided into two categories: linear

or branched. Linear PE facilitates the close packing of adjacent chains and is thus referred

to as high density polyethylene (HDPE). On the other hand, branched PE is characterized

by the number of branching points and the method of linking. The degree of branching

significantly affects the close packing of chains and thus branched PE can be referred to as

low density polyethylene (LDPE). The simplest branched polymer type is a star polymer

which consists of a number of linear polymers covalently bonded to a single branching point.

Star polymer properties are dependent upon the number of linear polymers (or arms) as well

as the molecular mass of each arm [12–19]. Other varieties of branched polymers include H-

type polymers which consist of two branching points, comb-like polymers where a number

of chains are attached to a backbone chain with two or more chains at each branching point,

and dendritic polymers with a very high degree of branching [20–24]. Examples of these

branching architectures are shown in Fig. 1.2.

In this thesis, we will study the dynamic and rheological properties for the simplest

branched polymer architecture. Therefore we will focus on homopolymers with a star ar-

chitecture under melt conditions. For a fundamental understanding and comparison with star

polymer melts, we will study linear polymer melts to ascertain the importance of branching

on their rheological response.

2



1. INTRODUCTION

Figure 1.2: Schematic presentation of different branched polymer architectures.

1.2 Polymer chain dynamics

The properties of linear polymer chains has been subject of extensive studies. From these

studies it is known that the dynamics of linear polymers are dependent on the chain length

[18, 25–33]. Short chain dynamics can be described using the Rouse model [34]. With in-

creasing chain length, the mobility of the polymers decrease due to the development of inter-

polymer entanglements. For long chain polymers their behaviours are influenced by topo-

logical interactions which drastically affect the dynamic properties of the chains. Long chain

polymer behaviors can be described by Reptation Theory [35, 36].

1.2.1 Rouse model

In the Rouse model, each polymer is subdivided into Gaussian segments connected together

by harmonic springs as illustrated in Fig. 1.3. In effect the Rouse model is a bead-spring

representation of a polymer chain where each bead is not subject to excluded volume effects

and the hydrodynamic interactions between the beads are ignored. As a result the motion of

a chain is caused by a friction force associated with the intra-molecular interactions and an

additional stochastic or random force.

The Rouse model is applicable to short linear chains in the melt state. It correctly predicts

the scaling of the center of mass diffusion constant where D ∼ N−1 and demonstrates that the

3



1. INTRODUCTION

Figure 1.3: A polymer chain in bead-spring model. (Adapted from [37])

viscosity is proportional to the chain length of an unentangled polymer. However, it does not

yield the correct expressions for slow diffusion behavior or the large relaxation time for melts

consisting of high molecular weight linear polymers where entanglement effects dominate.

1.2.2 Reptation theory

The slow motion of long highly entangled polymer chains cannot be entirely captured by

the Rouse model which is applicable up to a crossover time τe. To predict chain dynam-

ics beyond this crossover, Doi and Edwards refined reptation theory [35], introduced by de

Gennes [36], by making it applicable to highly entangled polymer liquids. For a polymer

melt, chains cannot pass through each other due to their elastic property. Each polymer is

subject to topological constraints from surrounding chains. These constraints are referred

to as entanglements and can be represented by a tube within which the polymer performs a

snake-like motion as shown in Fig. 1.4. For a single reptating chain, the theory predicts that

the viscosity and longest relaxation time follow the scaling law of N3, while the diffusion

constant scales as D ∼ N−2 where N is the polymer length.

1.3 Particle-based computer simulations

As the third branch of scientific study, computer simulations have been become more and

more prominent with advancements in modern computing technologies [38, 39]. They offer

increased control over system parameters in comparison to experiments, access to measures

4



1. INTRODUCTION

Figure 1.4: A test chain reptating in a tube defined by entanglements(crossings) with sur-

rounding chains.(Adapted from [37])

sometimes inaccessible in experiments and a platform to test theoretical predictions.

At first sight, it is tempting to perform a polymer simulation where all chemical structures

are included in an effort to capture as accurately as possible all interaction details. However,

polymers exhibit clear time and length scaling in their dynamical behaviors. A direct predic-

tion of the large scale dynamics and rheology from such a detailed method would require a

huge computational effort that would prove costly in terms of computation time. To reduce

the computational cost for the simulation of polymeric systems, coarse-graining approaches

may be applied for the study of rheological responses in such systems [40–42]. The central

concept in coarse graining approaches is the representation a group of atoms or monomers

as a larger group unit that neglects the atomistic details within the unit. By this means, the

replaced realistic parts will interact with each other as new repeated coarse grained particles.

Fig. 1.5 shows a schematic representation of a linear chain under atomistic level and subject

to different coarse graining degrees.

The evolution of the particle dynamics does not depend on the level of coarse graining

5



1. INTRODUCTION

Figure 1.5: Schematic representation of different levels of coarse-graining for a polymer

chain.(Adapted from [41])

applied to the constituent particles. For particles confined to a box with periodic boundary

conditions, the forces on the particles are firstly calculated. Using these forces, the positions

and the velocities (if a 2nd order integrator is used) are then updated for the next time step.

This process then continues for the duration of the program.

1.3.1 Molecular Dynamics

In coarse-grained molecular simulations, one particle represents the center of mass of a few

atoms. Accordingly a polymer chain will be substituted with a string of hard spheres or beads

with a sufficient repulsive potential at short distance to prevent chain crossings. One of the

most used approaches for the simulation of such a system is the Molecular Dynamics (MD)

algorithm. In MD particle positions and velocities are evolved by integrating Newton’s laws

of motion once the force on each particle has been calculated. Typically MD simulations can

only be applied to very short times as a small integration time step is required in order to attain

6



1. INTRODUCTION

a stable solution. In their MD simulations of polymer melts, Kremer and Grest (1990) [43]

implemented a standard bead-spring coarse-grained approach where two beads from any two

polymer chains interact via the repulsive Lennard-Jones pair potential,

Urep
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4ε

[(
σ
ri j

)12

−
(

σ
ri j

)6

+
1

4

]
, ri j ≤ 21/6σ

0, ri j > 21/6σ

(1.1)

where ri j is the vector separating the two beads, σ is an effective diameter and ε is the well

depth. In addition, the bond between two adjacent bonds in a chain was allowed to deform

subject to a FENE (Finite-Extensible Non-Linear Elastic) potential,

Uatt
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.5kR2
0 ln

[
1−

(
ri j

R0

)2
]
, ri j ≤ R0

∞, ri j > R0

(1.2)

where k is the spring constant and R0 is the maximum bond length. The FENE potential

provides a penalty on the free energy upon deformation. In their simulations, Kremer and

Grest set k=30ε/σ2 and R0 =1.5σ while the chain lengths varied between N =5 to N =400

beads for a constant monomer density ρ =0.85σ−3 [43].

1.3.2 Mesoscopic blobs

For the simulation of the rheological response of polymeric liquids, larger time and length

scales in comparison to the polymer chain approach of Kremer and Grest are required. In

order to reach these required scales, one may lump many more atoms together to represent

a coarse-grained entity. For example, for a given polymer chain every 20 monomeric units

can be replaced with a mesoscopic entity which is referred to a ‘blob’ [44–46]. This leads to

the introduction of soft interactions between blobs in that they are able to pass through each

other easily. To prevent the unrealistic crossing, additional restriction must be implemented

for the entangled polymer system.

An algorithm incorporating a number of uncrossability constraints has been developed by

Padding and Briels to explicitly detect and prevent bond crossings in mesoscopic simulations

7



1. INTRODUCTION

at high density. In this method, an ‘entanglement’ is considered as the crossing point between

two elastic bonds. Once the crossing is detected, the entanglement point X at the point of the

crossing is defined and a path from one blob via the entanglement to the bonded partner is

formed with the pathlength Ri,i+1 updated to read

Ri,i+1 → Li,i+1 =| Ri −X |+ | X−Ri+1 | . (1.3)

The entanglement point X shifts with the displacement of the blobs and will be fixed at the

equilibrium position of forces. In addition the attractive potential arising due to the two

crossing bonds is also updated by

φ att(Ri j) = c(Ri,i+1)
μ → φ att(Li,i+1) = c(Li,i+1)

μ (1.4)

where c and μ are fitting parameters. Using this uncrossability detection technique it is

possible to predict the rheology of linear polymer melts up to approximately 10 entanglement

lengths and study the properties of star polymer systems [44–47].

1.3.3 Coarse-Graining to a Single Particle

Due to the generic nature of polymers, their chemical differences are not noticeable on large

length scales i.e. polymer chain length. This naturally inspires us to develop a highly coarse-

grained approach that only keeps track of the dynamics of the centre of mass of the entire

polymer chain. Consequently each polymer is depicted as a single particle that interacts

with other coarse-grained particles under the action of a conservative energy and dominant

entanglement effects. This particle representation and interaction description is central to the

algorithm referred to as Responsive Particle Dynamics (RaPiD) [48–58]. In RaPiD, transient

forces are introduced to represent memory effects and to effectively describe the viscoelastic

response of the polymer fluid. These memory effects are captured with two main model

parameters; ni j which corresponds to the overlap of two interacting polymers i and j, and

n0(ri j) which is the equilibrium number of overlaps at a distance ri j between two polymers.

If two entangled polymers which are equilibrium are pulled apart so that ri j increases, ni j will

relax over a period until it reaches n0 for the new separation distance. During the period in

which ni j relaxes a non-zero entanglement force develops which goes to zero once ni j reaches

8



1. INTRODUCTION

the new equilibrium value. This transient force can be approximately expressed as

Ftransient ∝ (ni j −n0(ri j))
dn0(ri j)

dri j
. (1.5)

The RaPiD algorithm has proven to be an very efficient approach to study the long-time

linear and non- linear rheology in linear,telechelic and star polymer systems. RaPiD has been

applied for the simulation of a number of complex behaviours in polymeric fluids such as

shear banding [54], colloid alignment in viscoelastic fluids [56] and non-linear flow rheology

[48].

1.4 Polymers: Basic Concepts

Finally in this chapter a number of measures and concepts central to describing and quanti-

fying polymer dynamics and rheology are introduced [37, 59, 60].

1.4.1 End-to-End Distance and Radius of Gyration

An approximate way to describe the average size of a polymer chain is to measure the Mean

Square End-to-End distance Ree as given by

R2
ee = 〈R2〉= 〈(rN − r0)

2〉, (1.6)

where R is defined as the vector starting from r0 to the other terminal position rN for each

configuration of the linear polymer chain. Usually this is applied to a linear chain, while for

a star polymer it may be considered as the distance between the branch point to any one of

the arm ends.

The extent of a polymer may also be measured by the radius of gyration Rg which in

experiments is normally measured by light scattering techniques. Rg is calculated as from

the root mean square distance of each part of the chain ri from its center of mass position rG

using

R2
g =

1

N

N

∑
i=1

〈(ri − rG)
2〉 (1.7)

where rG is calculated from

rG =
1

N

N

∑
i=1

ri. (1.8)

9



1. INTRODUCTION

1.4.2 Mean Square Displacement and Diffusivity

The diffusion coefficient D is indicative of the transition property of a polymer system. It can

be calculated from the slope of the mean square displacement (MSD) of the centre of mass

according to the Einstein relation,

D = lim
t→∞

〈(r(t)− r(0))2〉
6t

. (1.9)

The computing time must be sufficiently long enough to accurately measure D and long

enough so that the chain diffuses more than its own radius of gyration.

1.4.3 Stress autocorrelation and Viscoelasticity

The viscoelastic character of polymer fluid can be expressed by the viscosity of the fluid. The

viscosity is calculating from the integral of the time correlation function of the stress tensor

for a system in equilibrium using

η =
V

kBT

∫ ∞

0
〈Sαβ (t)Sαβ (0)〉dt (1.10)

where V is the volume of the system, kBT is the thermal energy, and Sαβ is the αβ−component

of the stress tensor given by

Sαβ =− 1

V

N

∑
i
(ri,α − r j,α)Fi j,β (1.11)

with ri,α being the projection of the position vector of particle i on plane α , and Fi j,β the

β -component of the force on i due to the interaction with j.

10



1. INTRODUCTION

1.5 Thesis outline

This thesis is focused upon the simulation of architecturally complex polymer, especially

in the linear and star shapes, with the polymer entities subject to varying degrees of coarse

graining. We aim to study the properties of polymer melts to help towards understanding the

various behaviors of polymers with differing topologies. The thesis is organized as follows.

In Chapter 2, we present a mesoscopic coarse graining model for the study of star poly-

mer systems. The entanglement effect is accomplished by introducing the uncrossability

constraint. In order to understand the structural diffusion of star polymer, the segmental

diffusions are studied through the typical blob mean square displacements. Comparisons

are also presented between the star polymer systems and two corresponding linear polymer

chains, one with the same length as the star backbone chain and the other having the same

molecular mass as the entire star. The stretched Rouse mode autocorrelation function is also

investigated in this chapter.

In Chapter 3, we applied the extended coarse grained method to simulate the symmetric

three-armed star polymer melts, differing in the length of the arms. The dynamical properties

of melts of linear polymers are discussed to set the background. The comparison of stars with

matching linear polymers are implemented to highlight the effect of polymer architecture on

the bulk behavior. The scaling law of the star viscosity with molecular weight is also studied.

Asymmetric star polymers, in which the arms do not have the same length, are also dis-

cussed as well as the linear and symmetric stars in Chapter 4. In this work, two types of

asymmetric stars are introduced. By varying the side asymmetric arm length, the dynamics

of these polymers are compared with corresponding linear chains and symmetric stars.

In Chapter 5, we describe how we intend to calculate the RaPiD functions and parameters

from the data obtained with a small scale simulation. The small scale system in this case is

a three arm star polymer melt built from Kremer-Grest polymers under melt conditions. The

results are demonstrated from both the thermodynamic properties and the dynamic properties.

At the end of this thesis, the results are summarized in both English and Dutch.

11





2
Coarse-grained Simulations of

Moderately Entangled Star

Polyethylene Melt

In this paper, a previous coarse-grain model (J.T. Padding and W.J. Briels, J.

Chem. Phys.117, 925 (2002)) to simulate melts of linear polymers has been

adapted to simulate polymers with more complex hierarchies. Bond crossings

between highly coarse grained soft particles are prevented by applying an entan-

glement algorithm. We first test our method on a virtual branch point inside a

linear chain to make sure it works effectively when linking two linear arms. Next

we apply our method to study the diffusive and rheological behavior of a melt of

three-armed stars. We find that the diffusive behavior of the three-armed star is

very close to that of a linear polymer with the same molecular weight, while its

rheological properties are close to those of a linear chain with molecular mass

equal to that of the longest linear sub-chain in the star.

2.1 Introduction

Polyethylene is among the most important commercial plastics with a variety of applica-

tions in our daily lives, such as films, extrusion coating, food packaging, etc. [3]. It can

be produced in a variety of different forms based on two main structural types: high den-

sity linear polyethylene and low density branched polyethylene. It has been found that

the properties of polymer melts depend sensitively on the details of the chain architecture

[4–7, 11, 13, 14, 20, 30, 61, 62]. Thus to have a good understanding of the properties of poly-

mers in relation to the various possible topologies would be of great use to optimize the

13
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processing and synthesis techniques from both industrial and scientific perspectives.

The dynamical and rheological properties of linear polymer systems are described quite

well by the Rouse model for short chains [34] and the reptation model for entangled chains

[63]. The experimentally observed scaling laws for the melt self-diffusion coefficient and

viscosity as a function of molecular weight are explained successfully by these models [31,64,

65]. Besides this, computational methods have been developed to test theoretical predictions

and reveal new phenomena along with experiments in this field.

Among the computer simulations, fully atomistic molecular simulations are usually car-

ried out to acquire accurate fundamental information on polymer structures and dynamics

in relation to their chemical details [8, 25, 32, 33, 66]. However, with current computer ca-

pabilities these goals become unaccomplishable with highly entangled systems, where long

relaxation times and large simulation boxes have to be dealt with. In cases when less detailed

information is needed to understand the basic physical phenomena of interest, coarse-graining

techniques offer an alternative and efficient way to reach long time and length scales. For ex-

ample, when studying the flow properties of linear polymers, one is mainly interested in some

generic properties of entire chains [40–42, 44, 45, 67].

Despite the advantages of coarse grained simulations, one should be aware of the fact

that the coarse grain potential will become increasingly softer on lumping more and more

atoms together, and consequently bonds will finally be capable of crossing each other. Such

illegal bond crossings may be prevented by a number of uncrossability constraints. One has

been developed by Padding and Briels in a method, called TWENTANGLEMENT, based

on introducing an ‘entanglement’ at the touching location of two elastic bonds [44]. During

the remaining part of the run, the entanglement points are updated with every time step by

minimizing the elastic energy in the two entangled bonds, until they disentangle again. This

model has been shown to be able to describe the effects of entanglements and to reproduce

effectively experimental data of moderately entangled linear polymer melts [45].

In this work, we extend the program to be applicable to architecturally complex systems.

Roughly speaking, we have updated the entanglement algorithm to prevent crossings between

all branches of all polymers. Star polymers with a single branch point architecture present

the simplest example of a branched polymer, and have attracted scientific interests for a long

time [9, 10, 15–18]. We therefore first apply our model on star polymers.

14
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The organization of this paper is as follows: in Section 2.2 we describe the coarse-grained

simulation model and introduce the uncrossability constraint. The topology specification is

also discussed in this part. In Section 2.3 the properties of star polymer are presented and

we make the comparisons between 3-arm star and linear chains. Section 2.4 contains the

conclusions of this work.

2.2 Model overview and Simulated systems

2.2.1 Coarse-graining method and Brownian dynamics

Considering that the chemical details are unimportant when studying the dynamical prop-

erties of polymers at large time and length scales, we group a large number, λ = 20, of

monomers together into one coarse-grained bead (also referred to as blob). Accordingly a

coarse-grained chain can be described by several consecutive blobs. For example, a linear

polyethylene chain C140H282 in this work is represented by seven blobs and named B7.

For each blob, the center of mass position R is the average of λ monomer locations ri,

which are weighted by their mass mi,

R =
1

M

λ

∑
i=1

miri, (2.1)

where M is the blob’s total mass. Blobs are simply treated as Brownian particles and their

center of mass positions are evolving through a time dependent first-order Langevin equation,

which includes displacements due to forces and random displacements δRi

dRi =− 1

ξ
∇∇∇iΦdt +δRi, (2.2)

where Φ is the potential energy and ξ the blob friction coefficient. We assume that the fric-

tion coefficients are independent of the blob configurations, and are related to the stochastic

displacements through the fluctuation-dissipation theorem:

〈δRiα ·δR jβ 〉=
2kBT

ξ
dtδi jδαβ , (2.3)

where Greek subscripts refer to coordinate directions, kB is Boltzmann’s constant, and T is

the temperature of the system.
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Forces between blobs are derived from the potential of mean force, which is related to the

n-blob probability distribution function Pn according to

Φ(Rn) =−kBT lnPn(Rn), (2.4)

where Pn may be obtained from an appropriate atomistic simulation.

We assume that the total potential of mean force can be approximately expressed by three

independent contributions: a sum over all non-bonded pairs, one over bonded blobs, and one

over bond angles

Φ(Rn) = ∑
i< j

ϕnb(Ri, j)+∑
i

ϕb(Ri,i+1)+∑
i

ϕθ (θi). (2.5)

The inter- and intra-molecular interactions together with potential functions are shown in

Table 2.1. A Gaussian pair potential is used to describe repulsive forces between non-bonded

ϕnb and bonded ϕbrep blobs. The attractive part ϕbatt for bonded interaction is described by a

single power law. And the bending potential ϕθ is a cosine function of the angle θ between

two consecutive bonds.

interaction type potential expression

non-bonded ϕnb(R) = c0e−(R/b0)
2

bonded repulsive ϕbrep(R) = c1e−(R/b1)
2
+ c2e−(R/b2)

2

bonded attractive ϕbatt (R) = c3(R)μ

bending potential ϕθ (θ) = c4(1+ cosθ)ν

Table 2.1: Interactions between non-bonded and bonded blobs.

The blob interactions are of course more complicated than assumed here. However, it is

known that entanglement effects play a dominant role in the rheology of polymeric systems.

This allows us to neglect to a large extent all details of the interactions in our simulation work.

Similar assumptions are made in several other rheological simulation methods like in the

works of the Naples group [68–70], and in the work of Schieber [71, 72] and Likhtman [73–

75]. All these entanglement-based methods have the drawback that the diagonal elements

of the stress tensor are not necessarily correct and that thermodynamic properties in general
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are not described at all. A coarse grain model that does describe both thermodynamics and

rheology correctly was introduced by our group some time ago and now goes with the name

RaPiD [50, 51, 55, 56, 58]. This model, however, does not explicitly include the architectural

issues that we want to address in this paper.

2.2.2 Uncrossability constraint

As mentioned in the previous section, every 20 monomer units are lumped together to form a

highly coarse grained particle. Due to the high coarse-graining level, the interaction potential

of blobs becomes very soft and bonds can cross each other. In order to prevent the oc-

currence of this kind of unrealistic phenomenon, we implement an uncrossability constraint

algorithm (see below), which introduces entanglements when imminent bond crossings are

detected. The number of monomers mapped on one blob on the one hand satisfies the need

for a large integration time step, and on the other hand assures that the size of the blobs is

smaller than one reptation tube diameter. This allows for the possibility of reptation to emerge

from the simulation. A coarse graining to blobs larger than the tube diameter will smear out

confinement effects, resulting from the potential interactions and the imposed uncrossabil-

ity constraints, and show reptation at an incorrect length scale, unless reptational moves are

introduced by hand at the level of the blobs.

The uncrossability constraint is based on the consideration that bonds between blobs have

elastic properties. By means of a geometric check, as soon as two bonds are detected to touch

each other, an entanglement point X will be created at the crossing site. Concomitantly, the

attractive potential contributed by the two crossing bonds is changed by replacing the two

blob distances Ri,i+1 by pathlengths Li,i+1:

ϕatt(Li,i+1) = c3(Li,i+1)
μ . (2.6)

The pathlength Li,i+1 is the contourlength of the path that starts at blob i and goes via a

number of entanglement points X1,X2, ...,Xp, to the next blob i+1.

Li,i+1 = | Ri −X1 |+ | X1 −X2 |+...

+ | Xp−1 −Xp |+ | Xp −Ri+1 | . (2.7)

With every time step the ‘entanglements’ so created are updated such as to minimise the

total attractive bond energy, and thereby forbid chain crossing. We stress that the number
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Figure 2.1: Schematic representation of B(B3)2 with a branch point and three arms.

of entanglements so defined is not the same as the entanglement number Z as it is used in

reptation theory. It is rather the long-lasting entanglements which define the entanglement

number. We refer to the original paper by Padding and Briels for a distribution of entangle-

ment lifetimes for the linear chains.

2.2.3 Topology specification and simulation details

We conduct our simulations with linear and star polyethylene melts at a temperature of 450K.

The numberings of a 3-arm star polymer are shown in Fig. 2.1. The name of a star polymer

is defined by putting information of the branch point into the first bracket, and after that

the length and number of star arms. For example, B(B3)3 consists of one branch point to

which three arms are attached, each consisting of three blobs. Linear chains of n blobs in

this scheme are simply called Bn. Notice that the properties of, for example, B7 and B(B3)2

should be the same.

The main complication with the simulation of star polymers is due to the presence of a

branch point. In this paper we build stars by linking together linear chains to one central

branch point. Any two linear chains connected at a branch point should then communicate

through appropriate potential forces not present before the connection. Moreover entangle-

ments should be dealt with correctly.

In view of the algorithmic complications, we first implemented a simple test to ensure

that a branch point works properly when linking together two linear chains. The general idea

is displayed in Fig. 2.2, where two B4 chains are connected at a branch point by overlapping

18



2. COARSE-GRAINED SIMULATIONS OF MODERATELY ENTANGLED STAR POLYETHYLENE MELT

Figure 2.2: Sketch of B(B3)2 on the right with a branch point made by joining two B4 chains

on the left.

the tail and head blob of the first and second B4 chain. Consequently a new chain, called

B(B3)2 with a branch point B and two side arms (B3)2 is created. We assume that the branch

point has a mass and friction equal to that of a normal blob. Provided that the two originally

separated B4 chains now communicate their entanglements through the shared branch point

in a correct way, the newly formed B(B3)2 should be equivalent with a single B7 according to

the effective blob number. Therefore, entanglements which slip over the branch-end of one

chain should not be eliminated, as they would be at a regular end of a chain, but be recognized

as entanglements at the partner chain at the other side of the branch point. Only if this is done

correctly will the correct results be obtained for the longer chain. The procedure followed by

us at branch points of functionality three will be described below.

Blob and center of mass mean square displacements of B(B3)2 and B7 chains are shown

in Fig. 2.3. The simulation parameters are given in Table 2.2. From this plot, it is seen that

the new linear chain with a branch point inside, diffuses in exactly the same way as B7. We

also make a comparisons of the rheological properties of both systems expressed by their zero

shear stress relaxation moduli. In Fig. 2.4, the shear relaxation modulus of B(B3)2 very well

follows that of B7. We conclude that the branch point works perfectly well in terms of chain

dynamics.

Now shifting our attention to branch points in multi-armed stars, we need to take care that

the angle between two bonds connected through a branch point should be treated differently

than the one in a linear chain. The bonds inside a linear chain form angles taking any value

between zero and π . With three-armed stars we expect that the arms at the branched point will
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Figure 2.3: Diffusion of B7 and B(B3)2. For both center of mass and blobs, these two chains

diffuse in the same way.

on average be co-planar and make angles of 2/3π . In order to encourage our coarse-grained

system to take this configuration, we have changed the bending potential at the branch point

to

ϕθ
bp(θ) = c5(cosθ − cos

2

3
π)2. (2.8)

In Fig. 2.5 we have plotted the observed probability distributions (pdf), both for the bond

angles along the arms (panel a) and for those at the branch points (panel b), with parameters

given in Table 2.2. Notice that the pdf for the branch points has its maximum at a value of

cosθ slightly higher than -0.5, i.e. at angles slightly smaller than 2/3π . The reason for this

is that with non co-planer bonds the total sum of the bond angles is less than 2π .

We finally must decide what happens to entanglement that slip over the branch point.

Consider an entanglement that ‘lives’ on arm number one and slips over the branch point,

as illustrated in Fig. 2.6. After this move the entanglement may find itself in one of four

situations, it may have been annihilated, it may be entangled either with arm number two or

number three, or it may be entangled with both arms number two and number three. We have

implemented the following algorithm. After the slip, we randomly choose either arm number
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Figure 2.4: Stress autocorrelation function of B7 and B(B3)2, they are following the same

relaxation behavior.

two or arm number three. For the chosen arm we perform the usual entanglement checks

after a slip over a blob. If an entanglement occurs with this arm, we stick to this entangle-

ment ignoring other possibilities. If no entanglement occurs with this arm, we perform the

entanglement checks for the remaining arm. If an entanglement does occur with this arm, we

stick to this one and continue the run. In case also with this arm no entanglement survives,

we annihilate the entanglement and continue the run. This algorithm will give the correct re-

sult in case the entanglement is finally annihilated. In case exactly one entanglement should

remain, the algorithm will find the correct arm. In case two entanglements should occur, the

algorithm only creates one on a randomly chosen arm. A large number of geometrical checks

would be required to check for double entanglements. All results with the present algorithm

are therefore valid under the assumption that double entanglements are relatively rare.

To generate an equilibrated box, we randomly place a number of polymers into the simu-

lation box, keeping the mass density equal to its melt value of ρ = 0.761 g/cm3. Unentangled

simulations are performed first to allow a thorough equilibration. Then the uncrossability

constraints are switched on to add the entanglement effect. The parameters for the potential

of mean forces of this model are shown in Table 2.2. They apply when λ = 20, and are fit to

the distribution functions obtained in atomistic simulations [44].
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Figure 2.5: Probability distributions of bending angles in arbitrary unit. Panel a shows the

bond angles along the arms, and curve in panel b for those at the branch points.

Figure 2.6: Diagram of an entanglement slipping past a branch point.

2.3 Results

In this section we discuss typical blob time dependent mean square displacements. To this

end we number the blobs along the arms of each star from zero to three. With each star and

each arm, blob number zero is the branch point and blob number three is the end point, shown

in Fig. 2.1. Blob number one is the blob which is topologically closest to the branch point

and blob number two is closest to the end point. The mean square displacement for blobs of

type i is then

MSDi = 〈[Ri(t)−Ri(0)]
2〉, (2.9)
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types parameter value unit

non-bonded
c0 5.56 kJ mol−1

b0 0.49 nm

bonded repulsive

c1 10.46 kJ mol−1

b1 0.26 nm

c2 3.49 kJ mol−1

b2 0.67 nm

bonded attractive
c3 6.46 10−3 kJ mol−1 nm−μ

μ 9.73

angular

c4 3.01 kJ mol−1

c5 24.08 kJ mol−1

ν 1.2

Table 2.2: Parameters for potential of mean force.

here the pointy brackets denote the usual average over initial times and an average over all

blobs of type i, i.e. over all stars and all arms. Besides these we will also discuss the av-

eraged blob mean square displacement, MSDbl =
3
10 ∑3

i=1 MSDi +
1
10 MSD0 and MSDcm =

〈[Rcm(t)−Rcm(0)]2〉, with the Rcm being the center of mass of the star.

Furthermore we will discuss the shear relaxation modulus G(t), i.e. the linear stress

response to a step strain. It can be measured from equilibrium fluctuations of the stress tensor

as follows,

G(t) =
V

kBT
〈σαβ (t)σαβ (0)〉,α �= β (2.10)

with V the total volume of the simulation box, α , β ∈ {x,y,z} are different coordinate direc-

tions, and σαβ is the microscopic stress tensor:

σαβ =− 1

V ∑
i, j
(ri,β − r j,β )Fi j,α , (2.11)

where r is the blob position vector, and Fi j,α is the α component of the force on blob i exerted
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Figure 2.7: Time autocorrelation function of the unit vector directed from the branch point to

the end of three arms for B(B3)3, and end-to-end vector for linear B4 and linear B7.

by blob j. From G(t) we obtain the storage G′(ω) and loss modulus G′′(ω) in the usual way,

G′(ω) = ω
∫ ∞

0
sin(ωt)G(t)dt,

G′′(ω) = ω
∫ ∞

0
cos(ωt)G(t)dt. (2.12)

2.3.1 Dynamics and rheological properties of star polymer

In order to confirm the complete relaxation of our stars at the longest chain length possible, we

have calculated time dependent autocorrelation functions (ACF) for the unit vectors directed

from the branch point to the end-points of the star arms. The results are shown in Fig. 2.7

below, together with those for the end-end vectors of linear chains. It is clear from this

picture that, even when the decay of the branch-end vectors for our star is very slow, many

decay-times fit within the total runtime 106ps. We are assured therefore that our system is

well equilibrated. Similar conclusions may be drawn from the mean-square displacements

discussed next.

In Fig. 2.8 we display the blob and center of mass mean square displacements both when

entanglements are accounted for (black curves) and when entanglement have been ignored

(red curves). As is clear from the plots, entanglements substantially slow down the almost
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Figure 2.8: Blob mean square displacement (dashed) and center of mass mean square dis-

placement (solid) of B(B3)3 with (black) and without (red) entanglement.

Rouse-like mean square displacements obtained for non-entangling polymers.

In order to better understand the structural diffusion of entangled stars, we have measured

typical blob mean square displacements and plotted them in Fig. 2.9. As a result of the

symmetrical arrangement of the various blobs in B(B3)3, blobs on equivalent positions along

the three arms diffuse according to identical curves. The curves in Fig. 2.9 can therefore be

separated into four groups, from bottom to top corresponding to segmental motions of the

innermost branch point to the outermost free ends of each of the arms of the star. At early

times, because of topological constraints originating along three different arms, the central

branch point moves very slowly, in fact almost immediately as slow as in its final diffusive

regime (solid black). The blobs next to the branch point move substantially faster than the

branch point and become diffusive at a much later time. This trend continues with blobs being

situated increasingly further outwards along the arms, with the arm end being the fastest of

all, becoming diffusive only at a very late time.

In order to analyse the dynamics of the various blobs even further, we have calculated

Rouse modes and their time correlation functions. In the Appendix 2.4 we shortly review the

application of the Rouse model to non-linear polymers. From a mathematical point of view

the analysis in the Appendix amounts to a transformation from blob-coordinates Rk to Rouse

25



2. COARSE-GRAINED SIMULATIONS OF MODERATELY ENTANGLED STAR POLYETHYLENE MELT

102 103 104 105 106

Time   /   [ps]
10-1

100

101

102

103

M
SD

   
/  

 [n
m

2 ]
branch point
close to center
close to ends
ends

Figure 2.9: Mean square displacement of each blob in B(B3)3 with entanglement. From the

bottom to top, the curves are corresponding to the from innermost branch point to outermost

free ends along each star arms.

coordinates Xk which are chosen such that the coupled motion of the blobs in the Rouse

model become decoupled. The time correlation functions of the Rouse coordinates, Rouse

mode correlation functions for short, within the Rouse model decay exponentially with relax-

ation times τk. In case the Rouse model does not apply, the Rouse coordinates still provide

interesting coordinates to describe the motion of the blobs, in particular to reveal deviations

from Rouse behavior. Due to interactions between non-bonded blobs and the uncrossability

constrains, the Rouse mode time correlation functions will not follow the exponential de-

cay, and may usually be described reasonably well by the so called stretched exponentials

according to:

Ck(t) = 〈(Xk(t) ·Xk(0))〉/〈X2
k〉= exp[−(t/τ∗k )

βk ], (2.13)

the relaxation time τ∗k and stretching parameter βk are obtained for each Rouse mode number

k by fitting Eq. (2.13) to the simulated normalized Rouse mode autocorrelation Ck(t). Notice

that βk is equal to one in case the Rouse model applies.

In Fig. 2.10 we have plotted Ck(t) both for simulations with and without taking entan-

glements into account. For all modes the unentangled Rouse mode correlations are perfectly
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Figure 2.10: Mode relaxations in B(B3)3, scaled as ln[Ck(t)] on a linear scale. The solid

black and red curves are the modes corresponding to the system with and without entangle-

ments. The circles and dotted lines are the respective fits for each mode number k.

well described by simple exponentially decaying functions, indicating that the soft potential

Eq. (2.5) does not lead to non-Rouse behavior. Moreover, at very short times, the Rouse mode

correlation functions of the entangled and non-entangled simulations are tangential to each

other. Quickly, however, entanglements severely slow down the Rouse mode correlations

such that they cannot be described anymore by simple exponentials, although the stretched

exponentials of Eq. (2.13) still do a very good job.

According to Eq. (A.12), the blob positions can be calculated from the Rouse mode co-

ordinates. Assuming that in the real system Rouse modes are still not correlated, blob mean

square displacements may be calculated according to

〈[Rn(t)−Rn(0)]
2〉= 6DRt +2

N−1

∑
k=1

S2
nk〈Xk ·Xk〉(1−Ck(t)).

In Fig. 2.11, the solid curves are the blob displacements calculated from the simulation.

The dotted lines are calculated according to Eq. (??) using the simulated diffusion coefficient

DR and the exponential representation of the Rouse mode correlation functions (upper group

of curves, left vertical axis) or the stretched exponential representation of the Rouse mode

correlation functions (lower group of curves, right vertical axis). It is clearly seen that the
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Figure 2.11: Blob displacements of B(B3)3. The dotted lines are numerical calculations from

the modes: the upper groups are using the Rouse exponential fit, and the lower groups are the

ones from stretched exponential fit. The solid lines are simulation results for comparisons.

Rouse model representation, i.e. the exponential representation of the Rouse mode correlation

functions, leads to blob motions much faster than the actual motions, while the stretched

exponential representation gives almost correct results. The remaining deviations in the latter

case may be caused by correlations between different Rouse modes, or by small deviations

of the Rouse mode correlation functions from their stretched exponential fits.

We now turn our attention to the viscoelastic properties of our star polymer B(B3)3 melt.

In Fig. 2.12, the storage and loss moduli, G′(ω) and G′′(ω), are plotted as a function of

frequency. Both curves are calculated as the appropriate Fourier transform of the stress re-

laxation modulus G(t), shown in the inset. In the low frequency region G′(ω) and G′′(ω) are

proportional to ω and ω2 respectively. The crossing of both curves occurs when ω approx-

imately equals 10−3/ps, which means that the longest relaxation time of B(B3)3 is roughly

equal t =ω−1 = 103ps. At frequencies beyond the crossing point, G′(ω) becomes larger than

G′′(ω), and both curves continue to increase up to the highest frequency that can be investi-

gated with the present coarse grain model. The continuous increase of the loss modulus after

crossing the storage modulus is in agreement with experimental [61] and theoretical [13, 62]

predictions for small stars. Since our star is rather short, the slope of the loss modulus is still
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Figure 2.12: The storage and loss moduli, G′(ω) and G′′(ω), of B(B3)3 system, transformed

from stress relaxation curve G(t) on top left.

rather large. Only for very large stars will the slope practically become zero; this holds true

both for Rouse stars as well as for entangled stars.

2.3.2 Comparisons between star and linear polymers

Segmental motions in general reveal (part of) the topological constraints in complex poly-

mers. In order to better understand the relation between topological constraints and archi-

tectural complexity, we compare the conformational and dynamical properties of B(B3)3 and

those of related linear chains. We selected three linear chains for comparison: B4, which cor-

responds to the length of one arm, B7, which corresponds to the longest linear backbone in

B(B3)3 between two ends, and B10, corresponding to a linear chain having the same number

of blobs or molecular weight as the target star.

The radius of gyration Rg can be calculated directly from the simulated configurations, or

assuming Rouse-like behavior and using

Rg =

√√√√ 1

N

N−1

∑
k=1

〈Xk ·Xk〉= b

√√√√ 1

N

N−1

∑
k=1

1

λk
. (2.14)
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where b is the Kuhn length and λks are the eigenvalues of the connectivity matrix T(see

Appendix). The value of R2
g for B(B3)3 is 4.065nm2, and the ratio of R2

g of B(B3)3 to that

of B10 turns out to be 0.86, which is a bit larger than the theoretical or experimental value

0.8 [76, 77] obtained with very large molecular weights.

It is interesting to compare the branch-end vector autocorrelation function of the star

arms with the end-end vector autocorrelation functions of various linear chains as shown in

Fig. 2.7. As is to be expected, the star arms relax much slower than the corresponding linear

chain B4. The slowing down effect of connecting three arms together, is actually so strong

that the arm relaxation is even much slower than the end-end vector relaxation of the longest

chain present in the star, i.e. B7.

We next compare star and linear chains by their center of mass mean square displacements

and zero shear relaxation moduli. Fig. 2.13 reveals that the MSD curve of B(B3)3 (solid line)

strongly overlaps with the one of B10 (circle symbol) and is substantially slower than that

of B7. Notice that our linear stars are too small to show the various regimes in the (blob-

)mean square displacements that are so characteristic for reptational motion. In fact Our

longest chain is a bit shorter than two entanglement lengths. We refer to the original papers

of Padding and Briels for further information on this issue [45]. Although somewhat boldly,

we conclude/surmise that relatively small stars diffuse similar to linear polymers of equal

mass; on the basis of the present results, nothing can be said about the diffusive behavior of

much larger stars.

In contrast, Fig. 2.14 shows that the stress relaxation of B(B3)3 is much faster than that of

B10, very akin to that of B7. Intuitively one may say that stress fluctuations are roughly pro-

portional to the largest distance between two points of applied forces. These are very similar

in B(B3)3 and B7, and substantially shorter than in B10. By integrating G(t) we have calcu-

lated zero shear rate viscosities, finding η0(B7)=9.22×10−3Pa s, η0(B10)=32.3×10−3Pa s,

and η0(B(B3)3)=9.19×10−3Pa s. For the two linear polymers, these results are in agreement

with those in ref. [45], and in good agreement with experiments. We could not compare the

star polymer to experimental results, because synthesized stars typically have much larger

arms.
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Figure 2.13: Comparisons of center of mass mean square displacement in B(B3)3, B10 and

B7.

2.4 Conclusions

In this work, the TWENTANGLEMENT code to perform coarse-grain simulations of linear

polymers has been made applicable to polymers of more complex architectures. In order to

deal with complex architectures we have included the possibility to connect several polymers

at one branch point (of course one complex polymer may contain more than one branch

point). We have tested our code by connecting two linear chains into a longer linear chain.

Next we applied our method to build a star polymer B(B3)3 and investigated its dynamical and

rheological properties. The results were compared with those of linear melts with molecular

weight equal to that of the entire molecule or that of the main backbone chain consisting of

two arms and the branch point of our three-arm star.

From our simulations, we found that the shape of the polymer has an important effect

on the properties of the melt. We observed different dynamics for different star polymer

segments. Rouse mode correlation functions could be well described by stretched exponen-

tials. Assuming uncorrelated Rouse modes we recovered the blob mean square displacements

almost completely, meaning that different Rouse modes are only slightly correlated. The

comparison with linear chains revealed that (relatively short) star polymers diffuse as linear
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Figure 2.14: Comparisons of zero shear relaxation in B(B3)3, B10 and B7.

chains of equal mass whereas they display rheological behavior very similar to that of the

linear polymer with a molecular mass equal to that of the longest linear chain available in the

star.

Obviously each arm of our B(B3)3 represents a rather short polymer, approximately a bit

less than one entanglement length, but still long enough to capture some characteristics of a

star polymer melt that is different from a linear polymer melt. Future work will focus on sim-

ulations of stars having longer entangled arms and different numbers of arms to understand

the chain length and branching degree effect. Efforts are also in progress aiming at simulating

branched polymers of other shapes.

APPENDIX: ROUSE MODEL OF NONLINEAR POLYMERS

In this Appendix we quickly review the salient features of the Rouse model as applied to

non-linear polymers. We collect all position vectors Rn in one long vector R. To be clear,

every entry of R is a vector, not one of its Cartesian coordinates. The total number of entries

in R is therefore equal to the number of blobs N in each polymer. The equation of motion

then reads

dR
dt

=−wT R+F, (A.1)
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here T is a symmetric matrix reflecting the topology of the polymer and F is a vector of

random displacements, for which

〈F(t)〉 = 0,

〈F(t) ·F(0)T 〉 = 6D�δ (t), (A.2)

� denotes the N×N unit matrix. Finally, w denotes the elementary Rouse rate and D = 1
3 b2w

with b being the Kuhn length.

As an example we mention that equations of motion for the smallest possible three arm

star BB3 read as

dR0

dt
= −w(3R0 −R1 −R2 −R3)+ f0,

dR1

dt
= −w(R1 −R0)+ f1,

dR2

dt
= −w(R2 −R0)+ f2,

dR3

dt
= −w(R3 −R0)+ f3, (A.3)

from which we see that the matrix T reads

T =

⎡
⎢⎢⎢⎢⎢⎣

3 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (A.4)

Likewise for B(B3)3, we find

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 −1 0 0 −1 0 0

−1 2 −1 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0

−1 0 0 0 2 −1 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 −1 1 0 0 0

−1 0 0 0 0 0 0 2 −1 0

0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.5)
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We solve Eq. (A.1) by diagonalizing matrix T :

R = SX ,

dX
dt

= −wΛX +G,

Λ = S−1T S,

G = S−1F, (A.6)

here S is chosen such that Λ is diagonal, i.e. such that the columns of S are mutually orthogo-

nal eigenvectors of T . The entries of X are called Rouse vectors. It is convenient to normalize

these eigenvectors to unity, in which case S−1 = ST . In that case,

〈G〉 = 0,

〈G(t) ·G(0)T 〉 = 6D�δ (t). (A.7)

Always one of the eigenvalues of T is equal to zero, with corresponding normalized

eigenvector having all entries equal to 1/N. The corresponding Rouse-vector X0 and random

displacement vector G0 are given by

X0 =
1√
N

N

∑
k=1

Rk,

G0 =
1√
N

N

∑
k=1

Fk. (A.8)

Solving the equation of motion in this case, we find

X0(t) = X0(0)+

t∫
0

dt ′G0(t ′),

〈[X0(t) −X0(0)]
2〉= 6Dt (A.9)

Notice that X0 is
√

NRcm, so the diffusion coefficient is DR = D/N.

For the Rouse-vectors with non-zero eigenvalues, we obtain

Xk(t) = X0(0)e−wλkt +

t∫
0

dt ′e−wλk(t−t ′)Gk(t ′). (A.10)

Noticing that 〈Xk(t) ·Xk(t)〉= 〈Xk(0) ·Xk(0)〉,we find

〈Xk ·Xk〉 = 6D/(2wλk) = b2/λk,

〈[Xk(t)−Xk(0)]
2〉 =

2b2

λk
(1− e−wλkt), (A.11)
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with these results we are now in the position to calculate blob mean square displacements.

For this purpose, notice that

Rn =
1√
N

X0 +
N−1

∑
k=1

SnkXk. (A.12)

We then easily obtain

〈[Rn(t)−Rn(0)]
2〉

= 6DRt +2∑N−1
k=1 S2

nk 〈Xk ·Xk〉(1− e−ωλkt). (A.13)

The example of BB3 given above has eigenvalues λk = 0,1,1,4. The corresponding S-

matrix reads

S =

⎡
⎢⎢⎢⎢⎢⎣

1
2 0 0 1

2

√
3

1
2

1
2

√
2 0 0

1
2 − 1

2

√
2 1 0

1
2 0 0 1.

⎤
⎥⎥⎥⎥⎥⎦ (A.14)

Similarly, the S for B(B3)3 can be calculated.
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3
Simulations of Symmetric Star

Polymers with Different Arm

Lengths

Melts of three-armed polymers have been simulated using a coarse grained model

parameterized by atomistic simulations of polyethylene. The bonds between the

highly coarse grained, and hence soft, polymer beads are explicitly prevented

from crossing by the TWENTANGLEMENT algorithm. Three melts of symmetric

stars, differing in the lengths of the arms, are compared against five melts of lin-

ear polymers with comparable dimensions, to assess the impact of the branched

architecture on the self-diffusion and the bulk rheological properties. A satis-

factory quantitative agreement with experiments is observed for the diffusion

coefficients and zero-shear viscosities of the linear polymers. The power-law re-

lation between viscosity and molecular mass is indicative of the transition regime

between Rouse and reptation dynamics. The star polymers, in stead, follow

an exponential mass-viscosity relation and show qualitative agreement with the

storage and loss moduli for stars with far longer arms. The stress relaxation dy-

namics of the stars is also compared with a theoretical analysis in terms of Rouse

modes.

3.1 Introduction

Melts of star polymers behave differently from melts of linear polymers made of identical

monomers. They even obey distinctly different scaling laws. A well-known example is the

relation between the zero-shear viscosity and the molecular mass: for linear polymers the
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viscosity scales as a power of the total mass [27, 28], while for symmetric star polymers

the viscosity grows exponentially with the mass of an arm [78, 79]. This marked difference

is a consequence of the polymer dynamics at the microscopic level. Long linear polymers

perform reptation dynamics, i.e. they move predominantly along their own contour path,

confined to the tube formed by their neighbours [36, 63]. Star polymers with f long arms,

where f is also known as the functionality, will have their arms confined to f distinct tubes

for most of the time, thereby ruling out reptation dynamics. In stead, stars and other branched

polymers are believed to move by retracting an arm from its tube through thermal motion,

followed by extension of this arm into a new tube [80–84], which strongly reduces the dy-

namics of stars [85, 86]. Insights into the dynamical properties of polymer melts, and the

microscopic processes giving rise to the macroscopic properties, are gained in mutually sup-

plementary studies by experiment, theory and computer simulation [62, 87]. The dynamics

of branched polymers is of particular interest due to their wide usage in industry [88–91].

The long polymer or arm lengths required to see reptation or retraction dynamics, re-

spectively, pose a challenge to computer simulations. Ideally, one would like to simulate

polymers at the all-atom level by Molecular Dynamics (MD) to obtain a nearly exact agree-

ment between simulations and experiments, but the long length and time scales involved

make this computationally very demanding simulations [92]. The group of Tanner reported

united-atom simulations of C100H202 polyethylene (PE) isomers, using non-equilibrium tech-

niques to overcome the slow dynamics, in their study on the influence of star architecture on

the shear thinning characteristics [7]. To reduce the computational burden, one often lumps

together several backbone atoms and their adjacent hydrogen atoms or small side groups into

‘beads’. These beads are typically modelled as Lennard-Jones (LJ) spheres, connected by

finitely extensible nonlinear elastic (FENE) bonds [93] In this bead-spring polymer model,

the LJ and FENE potentials are tuned to guarantee that the chains can not cross each other,

thus retaining the key feature of polymer dynamics. The well-known Kremer-Grest model

for linear polymers was also applied, by its developers, to study the structural features of star

polymers, like the mass distribution, and their internal relaxation dynamics [94, 95]. Zhou

and Larson used a slightly modified model, including a bending potential to create a less

flexible chain, to study the predicted hopping dynamics of the branching point when an arm

has spontaneously retracted [96]. Bačová et al. used the same model to compare branch
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point dynamics in stars with free arm ends and stars with fixed arm ends [97]. Continuing

along the coarse-graining path of sacrificing chemical details to gain access to longer time

and length scales, one may group ever more backbone atoms (and their side groups) together

into mesoscopic ‘blobs’. The effective repulsive interaction between these blobs, as deduced

from atomistic MD simulations [44, 47], becomes softer with increasing blob mass, while

the bonds between the blobs become longer. Both trends are detrimental to the automatic

prevention of bond crossings in the simulations, hence alternative schemes have to be in-

troduced to re-instate entanglement effects. In slip-link models, the chains of particles are

threaded through a sequence of rings which are connected to fixed points in space by rigid

constrains or harmonic potentials [73, 98]. The rings restrict the sideways motions of the

chain, but not the reptational sliding of the chain through the rings; a series of rules govern

the creation of new rings when loops or dangling ends grow too large, while vacated rings

are removed. Masubuchi et al. used a slip-link model to study the viscoelastic properties of

a melt of star polymers, and the impact of branch point hopping on stress relaxation [99].

Padding and Briels developed the TWENTANGLEMENT algorithm [44, 45] that explicitly de-

tects imminent bond crossings and inserts entanglement points to prevent the bonds from

actually crossing. The equations of motion of the blobs and entanglement points are cou-

pled by mutual interactions; the chains are allowed to slip past an entanglement point, and

several mechanisms allow for disentanglement. We have recently extended this algorithm to

handle branched molecules. The first simulations of a melt of symmetric three-armed stars

already clearly highlighted the impact of the polymer architecture on the melt properties: the

short-armed stars diffuse like linear polymers of equal mass, but their rheological properties

resemble those of a linear polymer of equal end-to-end span [46]. In highly idealized lattice

models, such as the bond fluctuation model (BFM), the polymer beads are confined to lattice

points; the beads are displaced by Monte Carlo moves that explicitly forbid bond crossing

and double occupancies of lattice sites [100, 101]. Pakula used lattice models to study the

structure and relaxation dynamics of stars in melts, observing a hopping motion of star cen-

ters of mass [102, 103]. The lattice model simulations of three-armed stars by Brown and

Szamel are inconclusive on the power-law versus exponential scaling of the diffusion coef-

ficient with the mass of the arm [104]. Several of the aforementioned studies also present

results on asymmetric stars, and/or on more complex branched architectures [7, 96, 97, 99].
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In this work, we will use the TWENTANGLEMENT algorithm. Application of this method

to melts of linear PE chains of various lengths yielded good agreement with experimental

studies [45]. We have recently extended the technique to branched molecules, and success-

fully applied the algorithm to study a melt of PE stars with short arms [46]. Here, we extend

our previous study to symmetric three-armed stars with longer arms, thereby allowing the

arms to get more thoroughly entangled. The dynamical and rheological properties of three

melts are studied and compared against five melts of matching linear polymers. A global

overview of the TWENTANGLEMENT algorithm, the simulation set-up and the applied analy-

sis methods is provided in Section 3.2. The simulation results are presented and discussed in

Section 3.3, where the linear polymers precede the star polymers to facilitate the comparison.

Our main conclusions are summarized in Section 3.4.

3.2 Model and methods

3.2.1 Coarse grained polymers

In this study, we used the coarse grained TWENTANGLEMENT model. Originally developed

by Padding and Briels [44, 45] for the simulation of linear polymers, the algorithm was re-

cently extended by us [46] to study polymers with more complex architectures. The polymers

are composed of coarse grained particles (or blobs), each representing 20 consecutive back-

bone carbons of a polyethylene (PE) chain.

Assuming complete separation of time scales between the eliminated and retained degrees

of freedom, i.e. the positions Rn = {R1, . . . ,Rn} of the n blobs, and neglecting effects of

inertia, the time evolution of the position of the ith blob is described by the first order Langevin

equation

dRi =− 1

ξ
∇∇∇iΦdt +

√
2kBT dt

ξ
Θi. (3.1)

The friction coefficient ξ in the first term and the random displacements in the second term

represent the influence of the eliminated fast degrees of freedom on the retained slow degrees

of freedom, with kB the Boltzmann constant, T the absolute temperature, and where Θi de-

notes a Markovian stochastic vector of zero mean and unit variance, devoid of correlations
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between its components and between particles, and without memory. The potential of mean

force (PMF) is defined as Φ(Rn) =−kBT lnP(Rn), where the distribution function P of blob

center of mass positions has previously been determined by grouping together 20 consecutive

united atom CH2 particles in molecular dynamics simulations of a C120H242 melt [44, 105].

For practical reasons, the PMF has been approximated as a sum of contributions,

Φ(Rn) = ∑
i

φ bond(li,i+1)+∑
i

φ ang(θi,i+1,i+2)+∑
i j

φ nb(Ri j) (3.2)

with φ bond the attractive bond potential between two consecutive blobs at a bond length

li,i+1 = |Ri+1 −Ri|, φ ang the bending potential between three consecutive blobs at an an-

gle θi,i+1,i+2, and φ nb the repulsive non-bonded potential between any pair of blobs. We refer

the reader to our previous paper [46] for the functional forms and the parametrizations of

these interactions.

3.2.2 Uncrossability constraints

As mentioned in the Introduction, when the number of backbone carbons lumped into a blob

increases, the interactions between the blobs become softer and softer. The soft interactions

between C20 blobs do not prevent the CG polymers from crossing each other; this fundamen-

tal feature of polymers, with far reaching implications for the properties of a melt, is lost in

the coarse-graining procedure. In order to restore proper polymer dynamics, these unrealistic

bond crossing events are detected and prevented in the TWENTANGLEMENT algorithm. The

crossing of the i to i+1 bond with the j to j+1 bond is detected by a change in sign, during

the time step dt, of the triple product

Vi j =
[
(Ri+1 −Ri)× (R j+1 −R j)

]
· (Ri −R j) (3.3)

formed by the two bond vectors and their connecting vector. If the two bonds cross, an

‘entanglement point’ X is introduced at the (approximate) position of the crossing event. The

position of this entanglement point is updated every time step, using the procedure outlined

below, until the two bonds disentangle; this annihilation event is detected by a procedure

similar to that used to detect their creation.

The collection of n blob positions and a variable number of entanglement points is ad-

vanced in time by the following sequence of steps. For a given configuration, the potential
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energy and the forces are calculated by means of Eq. (3.2), with the one exception that the

bond length is not calculated as the direct distance between two consecutive blobs but as the

contour length of the (meandering) bond connecting these blobs:

∑
i

φ bond(li,i+1)→ ∑
i

φ bond(Li,i+1), (3.4)

where

Li,i+1 = |Ri −Xi,i+1
1 |+ |Xi,i+1

1 −Xi,i+1
2 |+ . . .+ |Xi,i+1

p −Ri+1| (3.5)

with Xi,i+1
1 , . . . ,Xi,i+1

p denoting the p entanglements along the bond connecting Ri to Ri+1.

The positions of the entanglement points are then determined by numerically minimizing the

total binding potential energy with respect to the entanglement points, subject to the given

blob positions. The resulting bond forces on the blobs, in combination with the angular and

non-bonded forces, are used to update the blob positions by means of Eq. (3.1). As the last

step in the cycle, the system is scanned to detect creations of new entanglements and annihi-

lations of old entanglements. Whereas the detection of bond crossing has been explained in

Eq. (3.3) using straight blob-to-blob paths, the employed algorithm detects crossings of the

meandering paths between the blobs by applying Eq. (3.3) to all straight segments connecting

successive points (by using entanglement positions as well as blob positions) along a poly-

mer chain. Since real polymers can slide past an entanglement point, the detection step also

allows entanglement points to slip over a blob, e.g. Xi,i+1
p becoming Xi+1,i+2

1 . Entanglements

slipping over the last bead of a chain are annihilated. For details on the implementation of

the TWENTANGLEMENT algorithm, we refer the reader to Padding and Briels [44, 45].

When applied to three-armed star polymers, TWENTANGLEMENT must be extended in

two ways. A minor change is that the angular potential centered on the branching point

reaches its minima at θ = ±120◦, rather than at θ = 180◦, as well as being stiffer than the

bending potential centered on a blob in a linear chain. A major change is required to enable

the slip of an entanglement point over a branching point, as this move now allows for more

complex final states than the slip of an entanglement point over a blob in a linear chain. In

our previous paper [46] we presented and tested a pragmatic solution to this complication.

The simulations were performed in cubic boxes with periodic boundary conditions, with

the densities of all melts fixed at ρ = 0.761 g/cm3. The number of polymers in the box varied
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from 100 for the shortest polymer, B9, to 80 for the longest chains, B19 and B(B6)3. Previous

studies on linear polymers established an entanglement length of about 6 beads [45]. A

friction coefficient ξ = 32 ps−1 was used for all polymers. The thermostat implicit in Eq. (3.1)

maintained a temperature of 450K. The timestep was 0.4 ps. Each melt was equilibrated as

thoroughly as possible (see Section 3.3), followed by a production run covering about 12 μs.

3.2.3 Analysis methods

The dynamics of polymers in the melt will be quantified by the diffusion coefficient, as ex-

tracted from the mean square displacement

D(t) =
1

6t

〈|Rcm
i (t)−Rcm

i (0)|2〉 , (3.6)

with Rcm
i (t) the center of mass position of the ith chain at time t, and the pointy brackets

denoting an average over all reference times and molecules.

Stress relaxation moduli are calculated from equilibrium simulations by means of the auto

correlation

G(t) =
V

6kBT ∑
αβ

〈σαβ (t)σαβ (0)〉, (3.7)

where the sum runs over the six off-diagonal elements and the stress tensor is given by

σαβ =− 1

V ∑
〈i, j〉

(Yi,α −Yj,α) fi j,β . (3.8)

Here Yi,α denotes the α-component of the position Yi of the ith entity – either a blob or an

entanglement point – in the box of volume V , fi j,β is the β -component of the force exerted on

this entity by entity j, and the sum runs over all entity pairs. A typical example of a calculated

stress auto correlation is shown in Fig. 3.1. The plotted markers are randomly selected from

the calculated G(t), showing all data points at low times but reaching a constant density for

large times, with red points representing positive values and blue points for negative values.

The distribution of these points gives a clear impression of the relatively low noise level

obtainable by the TWENTANGLEMENT method and of G(t) essentially having decayed to

zero for times exceeding a microsecond. The drawn line was obtained by block-averaging

the raw data:

Ḡ(t) =
∫ Δ

−Δ
G(t + τ)w(τ)dτ, (3.9)
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Figure 3.1: Stress relaxation modulus for B(B6)3 on a double logarithmic scale. The markers

present the raw data, red dots for positive values of G(t) and blue circles for negative values.

The solid line is the block average Ḡ(t) calculated using Eq. (3.9).

where w is a normalized weight function on the interval [−Δ,Δ]. We found that w(τ)∼ 1/τ ,

i.e. w(τ)dτ ∼ d lnτ , gives good results.

Having established the stress relaxation modulus, the zero-shear viscosity is calculated

by the Green-Kubo integral

η0 =
∫ ∞

0
G(t)dt, (3.10)

while the Fourier transforms

G′(ω) = ω
∫ ∞

0
sin(ωt)G(t)dt (3.11)

G′′(ω) = ω
∫ ∞

0
cos(ωt)G(t)dt, (3.12)

yield the storage and loss modulus, respectively. In the calculation of these integrals, the raw

data were used up to the first appearances of negative values, while for larger times G(t) was

approximated by a single decaying exponential fitted to the block averaged curve Ḡ(t). We

note that this smoothed tail contributes only ∼ 5% to the zero-shear viscosity, rendering the

final results insensitive to the details of the fit.
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Figure 3.2: Time-dependent diffusion coefficients for linear polymers of various lengths, as

extracted from the mean squared displacement of the polymer center of mass.

3.3 Results and Discussion

In this section the dynamical properties of melts of star polymers will be compared against

the dynamical properties of melts of linear polymers. The latter will be discussed first, to

set the background. We note that advances in hardware and software have made it possible

to simulate the linear polymers over considerably longer time scales than in previous TWEN-

TANGLEMENT studies [45]. This has now made possible a direct evaluation of the dynamical

properties of the longer chains, without resorting to extrapolation techniques.

3.3.1 Linear polymers

3.3.1.1 Diffusion

From theory and experimental observations it is known that the diffusion coefficient in a

melt of linear polymers decays with increasing molecular mass M, with D ∝ M−1 for short

polymers in the Rouse regime i and D ∝ M−2 for long polymers in the reptation regime

[25, 28, 34, 63]. Figure 3.2 shows the time-dependent center-of-mass diffusion coefficients

as extracted from the simulations by Eq. (4.5). After a transient decay on the nanosecond

time scale, the functions are seen to reach a plateau value that defines the long time diffusion

45



3. SIMULATIONS OF SYMMETRIC STAR POLYMERS WITH DIFFERENT ARM LENGTHS

102 103 104 105

Molecular Mass   /   [g/mol]
10-7

10-6

10-5

10-4

10-3

10-2

D
   

/  
 [n

m
2 /p

s]

MD simulation
Experiments
this work

Figure 3.3: Long time diffusion coefficients of linear polymers as a function of molecular

mass. The black dots are the results of this study, the red circles represent experimental data

from Pearson et al. [27], and the red pluses show molecular dynamics simulation results

obtained by Mondello et al. [106, 107]. The dashed lines illustrate the slopes expected for

the Rouse regime (left, D ∝ M−1) and the reptation regime (right, D ∝ M−2).

coefficient D. For the longest chain, which does not reach a clear plateau, D is approximated

by the minimum value of the D(t) curve. The terminal diffusion coefficients are plotted in

Fig. 3.3 against the molecular weight, showing a satisfactory quantitative agreement with the

experimental data by Pearson et al. [27]. Fitting the data with a power law yields an exponent

of -1.27, indicating that the chains under investigation are in the transition region between the

Rouse and reptation regimes.

3.3.1.2 Stress relaxation moduli

Stress relaxation moduli for five linear polymers are collected in Fig. 3.4. The curves almost

coalesce for short times and fan out for large times, with the longer polymers relaxing more

slowly than the shorter ones. The resulting viscosities at vanishing shear rate are plotted in

Fig. 3.5, supplemented with the zero-shear viscosities of three shorter chains, downto B2. The

results indicate that the simulations are in the transition regime between Rouse and reptation

dynamics. The power of 1.71±0.05 extracted from the first four points is appreciably lower
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Figure 3.4: Block-averaged stress relaxation moduli for five melts of linear polymers of vari-

ous chain lengths.

than the power of 2.4±0.2 extracted from the next four points, confirming that the simulated

melts are in the transition regime. Comparison with the experimental viscosities of Pearson

et al. [27] reveals a good quantitative agreement. Unlike for the diffusion coefficient, the

location and width of the transition regime of the simulated melts appear to agree with those

of the experimental melts.

3.3.2 Three-armed stars

It is well known that the properties of a melt are strongly affected by the architecture of the

constituent polymers. [6, 7, 12–14] In our previous work, on the development and validation

of TWENTANGLEMENT for non-linear chains, we simulated a melt of three-armed stars with

short arms, B(B3)3. Here, we study symmetric three-armed stars with longer arms approach-

ing the entanglement length, up to B(B6)3. The dynamical properties will be compared to

those of matching linear polymers; for a B(Bn)3 star, these are the linear polymer of the same

mass B3n+1 and the linear polymer with the same maximum end-to-end span, B2n+1.
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Figure 3.5: Zero shear viscosities of melts of linear polymers as a function of the molecular

mass. The black dots are the results of this study, the red circles represent experimental data

from Pearson et al. [27], and the red pluses show simulation results obtained by Mondello

et al. [106] using molecular dynamics. The dashed lines highlight the experimental scaling

laws at low mass (η ∝ M1.8) and high mass (η ∝ M3.5).

3.3.2.1 Diffusion

The time-dependent diffusion coefficients for three melts of stars polymers are depicted in

Fig. 3.6. Like for the linear polymers, D(t) initially decays before leveling off, where the

height of the plateau again decreases with increasing mass. To make the comparison with the

linear polymers more explicit, the three curves are redrawn in separate subplots of Fig. 3.7

along with the D(t) of the matching linear polymers. It is readily observed that, of the three

polymers per subfigure, the linear polymer of matching end-to-end span has the largest diffu-

sion coefficient. For small times, the diffusion coefficients of the stars closely resemble those

of the linear polymers of equal mass. The smallest star, like the smaller B(B3)3 simulated

in our previous study, even matches the D(t) of the equal mass linear polymer over the en-

tire time range. With increasing arm length, however, the effect of the topological difference

becomes apparent as the stars converge to smaller terminal diffusion coefficients than the

matching equal mass linear polymers.
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Figure 3.6: Time-dependent diffusion coefficients for three melts of three-armed star poly-

mers.

3.3.2.2 Stress relaxation moduli

The stress relaxation moduli of four star polymer melts are shown in Fig. 3.8. At first glance

these curves appear fairly similar to those shown in Fig. 3.4 for the linear polymers: for

small times the curves nearly overlap, while for large times the curves spread out with the

largest star relaxing the slowest. To facilitate the comparison, the stress relaxation functions

of the three stars are plotted in the three subfigures to Fig. 3.9 together with the curves of

their matching linear polymers. For the smallest star, B(B4)3, the G(t) closely follows that of

the linear polymer of equal maximum span, B9. With increasing arm length, the tail of G(t)

decays slower for the star than for the linear polymer of equal span, and creeps toward the

G(t) of the polymer of equal mass. This slackening of the relaxation process at late times is

attributed to the architecture of the star. The largest star polymer in Fig. 3.8, with 7 beads per

arm, has been excluded from this and following comparisons against linear polymers, because

its very slow dynamics makes it difficult to asses whether the small plateau appearing in the

tail of its G(t), beyond ∼ 5 ·105 ps, represents a true shoulder or merely emerges as an artefact

of insufficient sampling.

In Fig. 3.9 shear relaxation moduli of stars are compared with those of linear chains. In

general the star relaxes at time scales between those of the longest end-to-end and the total
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Figure 3.7: Time-dependent diffusion coefficients for three melts of three-armed star polymers

(black solid lines), compared against the diffusion of linear polymers of equal mass (green

dashed lines) and of equal end-to-end span (red solid lines).

mass linear polymer. With increasing mass, its longest time gradually approaches that of the

total mass linear. This leads to qualitatively different behaviour of the relaxation moduli of

the stars and linear chains. The storage and loss moduli of the star polymers are presented in

Fig. 3.10. At the low frequency side, the G′ ∝ ω2 and G′′ ∝ ω tails are seen to shift to lower

frequencies with increasing molecular mass, reflecting an increase of the zero-shear viscosity

[29]. At the high frequencies, the storage and loss moduli of the three stars nearly coalesce
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Figure 3.8: Stress relaxation moduli for four melts of three-armed star polymers.

to straight lines in the double logarithmic plot, with power laws fitted to the individual curves

yielding exponents in the 0.35 to 0.55 range. The storage and loss moduli of the star polymers

are being compared against the moduli of the linear polymer of equal mass in Fig. 3.11.

For every melt, the frequencies have been scaled by the frequency at the cross-over point,

ωc ∼ 10−4 ps−1, and the moduli have been scaled by the modulus at the cross-over point,

G′(ωc) = G′′(ωc) ∼ 1 MPa. The plot shows that the rescaled moduli of the smallest star

closely adhere in the two decades following the cross-over point to those of the linear polymer

of equal mass, suggesting that the polymer topology barely affects the dynamics of these

short-armed stars in this frequency range. With increasing arm length, the moduli of the

stars are seen to deviate from the moduli of the linear polymers in the two decades following

the cross-over. The main feature to be noted is the ‘wedge’ between the storage and loss

moduli, i.e. the gradual growth with increasing frequency of the difference between the solid

and dashed curves. This wedge is observed for the melts of linear polymers, and opens up

with approximately the same angle for all three melts in Fig. 3.11. An identical wedge is

seen for the star with the shortest arms, B(B4)3. For the stars with one additional bead per

arm, however, the angle has reduced considerably. The wedge has essentially closed for the

largest star, B(B6)3, where the storage and loss moduli are seen to nearly coalesce for the first

decade and a half following the cross-over. (Note that for this melt the curves were rescaled
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Figure 3.9: Stress relaxation moduli for three melts of three-armed star polymers (solid black

lines), compared against the moduli of linear polymers of equal mass (red solid lines) and of

equal end-to-end span (green dashed lines).

relative to the cross-over point at the low frequency end of the overlap region). Although

the polymers are evidently too short to attain the large numbers of entanglements required for

reptation dynamics, the simulations nevertheless agree qualitatively with experiments on long

polymers in yielding a wider wedge for the linear polymers than for the star polymers [12,14].

In the experimental studies the storage and loss moduli of star polymers continue to rise after

the cross-over point, while for linear polymers G′ crosses the local maximum of G′′. The
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Figure 3.10: Storage (top) and loss (bottom) moduli for melts of three-armed star polymers.

steeper slopes in Fig. 3.11 – and the absence of a local maximum in G′′ for the linear polymers

– reflect the limited length of the simulated polymers.

The viscosities calculated from the stress relaxation curves in Fig. 3.8 are plotted in

Fig. 3.12 against the molecular mass M. Also included is the small B(B3)3 star of our pre-

vious study [46]. Fitting the viscosities of these five melts with a power law yields the red

line in Fig. 3.12, with a power of 1.6± 0.2. Whereas the nine melts of linear polymers are

clearly seen in Fig. 3.5 to follow a power law with a markedly higher power, the star poly-
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Figure 3.11: Storage (solid lines) and loss moduli (dashed lines) for melts of three-armed

star polymers (black) and linear polymers of equal mass (green). For comparison purposes,

the frequencies and moduli have been scaled by the frequency and moduli at their cross-over

points, ωc, G′
c and G′′

c respectively, of the respective melts.

mers reveal a systematic deviation from a power law in Fig. 3.12. The viscosities are better

fitted by an exponential, η ∝ eνM with ν = (1.3± 0.1) · 10−4 mol/g, as shown by the green

line in Fig. 3.12. Assuming an entanglement mass Me of six beads [45] yields η ∝ eν ′(Ma/Me)

with Ma the mass per arm; the coefficient ν ′ ≈ 0.07 underestimates the experimental value

of 0.47 [12]. Experiments on stars with many and/or long arms point at a power-exponential

scaling law [12], but fits of the simulation viscosities with a function of this type converge

to a negative power, in contradiction to the experimental and theoretical results. We note

that in the calculation of the viscosity of the largest star, B(B7)3, the integrated exponen-

tial tail of its stress relaxation function was fitted to the exponentially decaying regime of

the block-averaged Ḡ(t) preceding the suspect plateau region. Since the resulting viscosity

matches well with an exponential fitted through the viscosities of the four shorter polymers,

the plateau is more likely a consequence of insufficient sampling than a rheological feature

of the system.
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Figure 3.12: Zero shear viscosities for five melts of three-armed stars polymers, B(B3)3

through B(B7)3, plotted against the molecular mass. An exponential function (green line) fits

the data better than a power law (red line).

3.3.2.3 Rouse modes

To get a better appreciation of the role of entanglements in the stress relaxation modulus of

the star polymers, we have calculated the G(t) as expected for star polymers obeying Rouse-

like dynamics with relaxation times extracted from the simulations. In Rouse theory, the

blob coordinates Ri are mapped onto Rouse coordinates Xk by a linear transformation that

decouples the motions of the Rouse coordinates. [34, 63] The relaxations of these modes are

well described by stretched exponentials, [45, 46, 63]

Ck(t) =
〈Xk(t) ·Xk(0)〉

〈X2
k〉

= e−(t/τ∗k )
βk , (3.13)

with τ∗k the relaxation time (deviant from the conventional Rouse time obtained for βk = 1)

and βk the stretching exponent. For a collection of Nc uncorrelated polymers, each on average

adhering to the above relaxation process, it is shown in Appendix 3.4 that

G(t)≈ NckBT
V

N−1

∑
k=1

e−2(t/τ∗k )
βk , (3.14)

with N the number of beads per chain. Hence, the N − 1 relaxation curves Ck(t) were cal-

culated from the blob coordinates stored during the simulations of the stars, and both τ∗k and
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Figure 3.13: Stress relation moduli of the simulated star polymers (black) compared against

the theoretical predicted curves for Rouse-like star polymers with the same transient relax-

ation dynamics.

βk were extracted by fitting the initial decay by a stretched exponential. The resulting relax-

ation times show the same degeneracy pattern as the theoretical Rouse times derived in the

appendix; the stretching exponents mostly lie between 0.7 and 1. Inserting the fitted values

into Eq. (3.14) produces the red curves in Fig. 3.13, plotted alongside the actual stress relax-

ation functions in black. The pairs of curves show a satisfactory agreement for short times,

certainly in view of the assumptions made in deriving Eq. (3.14), while at large times the
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Figure 3.14: Three arm star G’ and G” compared with stretch Rouse modulus.

slowing down of the relaxation dynamics due to the entanglements becomes visible again.

The storage and loss moduli following the Rouse model with stretched exponentials are

shown in Fig. 3.14. In agreement with the direct analysis of the star polymer simulations, the

wedge between the storage and loss moduli decreases with increasing arm length. The angle

of the wedge, however, is considerably wider than in the direct analysis.
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3.4 Conclusions

The diffusive and rheological properties of linear and three-armed polyethylene polymers of

various lengths have been studied by computer simulations using the highly coarse grained

TWENTANGLEMENT technique. The scaling behaviour of the zero shear viscosity indicates

that the linear polymers are in the transition region between Rouse and reptation dynamics.

Both the diffusion coefficient and the viscosity are in quantitative agreement with experi-

mental data, while most other coarse grain simulation approaches for polymers are limited

to quantitative agreement for either D or η . Comparing the simulated symmetric star poly-

mers with linear polymers, matching in mass or end-to-end span, highlights the impact of the

architecture on the dynamical properties of the melt: Stars are seen to diffuse slower than

both matching linear polymers, while the stress relaxation curve lies between those of the

matching linear polymers. The viscosity of the linear polymers follows a power law in the

molecular mass, the star polymers show exponential scaling in stead. A qualitative agreement

with experiments is observed for the wedge between the storage and loss moduli, with linear

polymers yielding a larger wedge than star polymers. The quantitative validation of the star

simulations has to wait till experimental data on three-armed stars with short arms become

available.

APPENDIX : STRESS RELAXATION MODULUS

The objective in this appendix is to derive Eq. (3.14) for the stress relaxation modulus in a

melt of polymers with Rouse-like dynamics. The stress tensor of a melt in a specific config-

uration, neglecting the kinetic contributions, is equal to

σσσ =− 1

V

Nc

∑
a=1

N

∑
i=1

RaiFai, (A.1)

with V the volume of the simulation box, Rai the position vector of particle i of polymer a,

Fai the total force on this particle, Nc the number of chains and N the number of blobs per

chain. The total stress can be expressed as

σσσ =
Nc

∑
a=1

σσσ ′
a, (A.2)
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with the stress tensor of polymer a given by

σσσ ′
a =− 1

V

N

∑
i=1

RaiFai. (A.3)

In a mean field approximation, the stress tensors of two polymers a and b are uncorrelated,

〈σσσ ′
a(t)σσσ

′
b(0)〉= δab〈σσσ ′(t)σσσ ′(0)〉, (A.4)

where for notational convenience we have dropped the polymer label on the right hand side.

Dropping this label also from the polymeric stress yields

σσσ ′ =− 1

V

N

∑
i=1

RiFi, (A.5)

with the forces Fi still including interactions between polymers. We now make the assump-

tion that the inter-molecular forces can be taken into account by assuming effective intra-

molecular forces, which is supported by the subsequent results. Since the sum over all in-

ternal forces is zero, this renders the polymeric stress independent of the polymer’s position

within the box. For beads connected by springs, the forces then take the form

F =−ξ wT R, (A.6)

where ξ is the friction coefficient and w the elementary Rouse rate. The positions Ri have

been collected in the long vector R, with the N entries in this vector representing coordinate

vectors rather than Cartesian coordinates; the long force vector is constructed likewise. The

matrix T describes the structure of the polymer: the diagonal elements count the number of

connections of a bead, the off-diagonal elements are -1 for connected bead pairs and zero

otherwise; an example hereof for a three-armed star can be found in Ref.(33). Combining

Eq. (A.6) with Eq. (A.5) yields the polymeric stress

σσσ ′ =
ξ w
V

RT T R. (A.7)

At this point it is convenient to make the transition from correlated blob coordinates to uncou-

pled Rouse modes. The long vector X of Rouse vectors is obtained by a linear combination

of the position vectors, X = SR, where S is the orthogonal matrix that diagonalizes T into the

matrix Λ of eigenvalues {λ1, . . . ,λNc}. As a result of the symmetry in the star architecture,
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and hence T , several of these eigenvalues are degenerate. Expressing the stress in terms of

the Rouse vectors gives

σσσ ′ =
ξ w
V

XT ΛX =
ξ w
V

N−1

∑
k=1

λkXkXk. (A.8)

Applying the equipartition theorem to the potential energy expression matching Eq. (A.6)

yields

〈Xk ·Xk〉= 3kBT
ξ wλk

, (A.9)

and therefore

σσσ ′ =
3kBT

V

N−1

∑
k=1

XkXk

〈Xk ·Xk〉 . (A.10)

The diagonal elements of the force contribution to the total stress produce the average

〈σαα〉= Nc〈σ ′
αα〉=

Nc(N −1)

V
kBT. (A.11)

This large term – note that the blob density in the simulations is nearly two orders higher than

the molecule density in a gas at ambient conditions – cancels almost completely against the

kinetic contribution to the stress.

Turning now to the off-diagonal elements of the stress, the shear relaxation modulus is

given by

G(t) =
V

kBT
〈σαβ (t)σαβ (0)〉 (A.12)

= Nc
V

kBT
〈σ ′

αβ (t)σ
′
αβ (0)〉, (A.13)

where Eq. (A.4) was used in the last step. Inserting Eq. (A.10) yields a double summation,

with indices k and k′, over terms of the form

〈Xkα(t)Xkβ (t)Xk′α(0)Xk′β (0)〉
= 〈Xkα(t)Xkβ (t)〉〈Xk′α(0)Xk′β (0)〉
+ 〈Xkα(t)Xk′α(0)〉〈Xkβ (t)Xk′β (0)〉
+ 〈Xkα(t)Xk′β (0)〉〈Xkβ (t)Xk′α(0)〉
= δkk′ 〈Xkα(t)Xkα(0)〉〈Xkβ (t)Xkβ (0)〉

=
1

9
δkk′ 〈Xk(t) ·Xk(0)〉2, (A.14)
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where the first step follows from the Isserlis-Wick theorem, the second step is based on the

absence of correlations between orthogonal directions, and the last step employs the equiva-

lence of all three Cartesian directions. The Kronecker delta on the last line reduces the double

summation in G(t) into a single summation,

G(t) = Nc
kBT
V

N−1

∑
k=1

〈Xk(t) ·Xk(0)〉2

〈Xk ·Xk〉2
. (A.15)

For the ideal Rouse polymer, the internal force in Eq. (A.6) gives rise to exponentially de-

caying auto-correlation functions for Xk, with relaxation times (wλk)
−1. The motion of an

actual polymer is affected by the surrounding polymers, resuling in the transient decay of the

auto-correlation being better described by the stretched exponentials of Eq. (3.13). Inserting

these stretched exponentials into Eq. (A.15) produces Eq. (3.14).
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4
Dynamics of Asymmetric Star

Polymers under Coarse Grain

Simulations

In this chapter we study asymmetric star polymers by coarse grain simulations.

Each polymer is represented by a branched string of soft blobs, and uncrossabil-

ity constraints are added to prevent chain crossings. Two types of asymmetric

three-armed stars are considered, with varying lengths for the differing arm to

asses their impact on the viscoelastic properties of the melt. Changes in the re-

laxation dynamics of the melts are already discernable for short arms, well below

the entanglement mass. The analysis of the dynamical properties of the larger

stars, with arm lengths approaching the entanglement length, indicate that infre-

quent arm retraction events are the main mechanism slowing down the relaxation

dynamics of the melt.

4.1 Introduction

It is well known that the dynamic and viscoelastic properties of polymer melts depend on the

architecture of the polymer [7, 14, 27, 31, 34–36, 61, 87, 102, 108–110]. Experimental studies

of long linear polymers show that the diffusion coefficient and viscosity scale as power laws

with the polymer mass [27–29]. This behaviour is explained by the reptation model of de

Gennes, Doi and Edwards: the polymers are diffusing along the confining tube formed by

their neighbours [35, 36]. A long star-like polymer will have each of its arms confined to

a separate tube, making it impossible for the star to move by the reptation mechanism. In

marked difference to the linear polymers, stars are observed to follow exponential scaling
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laws in the experiments [6,14,61,87,111]. This behaviour is explained by the ‘arm retraction’

theory of de Gennes: the branching point of a star can only move when the constraints on

an arm are released by full contraction along its primitive path [80]. The calculation of the

retraction rate, in terms of Kramers’ thermally activated escape rate from a potential well, as

presented by Doi and Kuzuu [81] and subsequently extended by Pearson and Helfand [82],

yields the exponential dependence on the arm length. Viscoelastic properties derived using

these models are in good agreement with experiments [14, 31, 61]. These concepts have

also been applied to polymers with complex multiply branched architectures by Milner and

McLeish and the Larson group [18, 88, 91, 112, 113].

Computer simulations of polymer dynamics at the level of atoms or chain segments are

being used by a number of groups to probe the above concepts. A complication inherent to

these studies is the extremely slow dynamics of highly entangled linear and star polymers;

this makes the simulations very computer intensive, even when using coarse-grained models.

Reptation-like behaviour has been observed in a number of simulations [7, 11, 66, 74, 92]. A

first, somewhat inconclusive indication of hopping motion of the branch point was observed

by [96]. Masubuchi et al. noted that suppression of the branch point motion resulted in

unreasonably slow relaxation dynamics [99]. For symmetric stars, motion of the branch

point along the tube of one of the arms has been reported by Bačová et al. for a selected

star with fixed end points in a melt of free stars [97]. So, while a direct correlation between

branch point motion and arm configurations has not yet been established, these simulations,

as well as experiments with tracers attached the branch point, support the theoretical frame

work based on branch point motion.

In this chapter, we set forth to explore the dynamics of melts of asymmetric stars. We will

investigate how the rheology of the stars changes when going from asymmetric to symmetric

stars, and discuss our results in the light of arm retraction. Our polymers are simulated by

the TWENTANGLEMENT approach, as extended and applied in the previous chapters. After a

brief explanation of the simulation model and analysis techniques in Section 4.2, the simu-

lation results on two classes of asymmetric stars are presented and discussed in Section 4.3.

conclusion is made in Section 4.4.
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Figure 4.1: Schematic diagrams of two 3-arm asymmetric star. On the left the ‘T-shaped’

B(B3)(B7)2 with one short and two long arms, and on the right the ’Y’-shaped B(B7)(B3)2

with one long and two short arms.

4.2 Model and methods

4.2.1 Simulation model

In this chapter we will apply the coarse grained TWENTANGLEMENT model, as already pre-

sented in Chapters 2 and 3, to simulate asymmetric stars of polyethylene. Briefly, each

coarse grained particle or ‘blob’ represents a polymer fragment of 20 backbone carbon atoms

plus attached hydrogen atoms. The asymmetric three-armed stars follow the generic formula

B(Bm)(Bn)2, where the first symbol B stands for the branching point, connected to one arm

of m blobs and two arms of n blobs each. Henceforth, stars with one short (m = 3, 5 or 7) and

two long (n = 7) arms will be referred to as ‘T’-shaped, while stars with one long (m = 3,

5 or 7) and two short (n = 3) arms are called ‘Y’-shaped, as illustrated by the examples in

Fig. 4.1.

The coarse-graining procedure gives rise to a stochastic equation of motion for the blobs.

The change in the position Ri of particle i over a time-step dt is calculated using a first order

Langevin equation,

dRi =− 1

ξ
FC

i dt +δRi. (4.1)

Here, ξ denotes the friction coefficient of the blob, and the conservative force is derived from

a potential of mean force,

FC
i =−∇∇∇iΦ, (4.2)
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to be discussed below. In the second term on the right of Eq. (4.1), the random Markovian

displacements have zero mean 〈δRi(τ)〉= 0 and are related to the friction in the first term by

the fluctuation-dissipation theorem,

〈δRi(τ)δR j(τ ′)〉= 2kBT
ξ

1δi jδτ,τ ′dt, (4.3)

where 1 is the unit matrix, kB the Boltzmann constant, T the temperature and where the

two Kronecker deltas have the value of one if their two indices (particle numbers and step

numbers, respectively) are equal and the value of zero if their two indices are unequal.

The employed potential of mean force was derived from the probability distribution P of

blob centers of mass in atomistic simulations of a C120H242 melt, by using Φ=−kBT lnP(Rn).

For convenience, this potential was approximated as a sum of contributions, with φ bond(li,i+1)

the attraction between two bonded blobs i and i+1 at a separation li,i+1 = |Ri+1 −Ri|, with

φ ang(θ) the bending potential relating to the angle θ formed by three consecutive blobs,

φ nb(Ri j) the non-bonded interaction between two blobs i and j, and φ rep(Ri,i+1) the repul-

sion between two bonded blobs i and i+1. We refer the reader to earlier work for a detailed

discussion of the potential [44, 114].

Because each blob represents a flexible collection of bonded atoms, the non-bonded re-

pulsive interactions between blobs are much softer than those between atoms. The repulsions

are, in fact, too weak to inhibit crossings of the coarse grained polymers and thus a key prop-

erty determining the dynamics of polymer melts is lost upon coarse-graining. To prevent these

unrealistic crossing events, Padding and Briels developed the TWENTANGLEMENT algorithm

that uses elastic forces to contain and reverse bond crossings [44]. In short: an ‘entanglement

point’ X is introduced at the point where the bond between blobs i and i+ 1 first crosses

another bond. The binding energies φ bond of these bonds are henceforth calculated using

the contour length Li,i+1 of the path from blob to blob via the entanglement point. The path

between two consecutive blobs can collect multiple entanglement points by ‘crossing’ other

paths, resulting in twisting paths of contour length

Li,i+1 = |Ri −Xi,i+1
1 |+ |Xi,i+1

1 −Xi,i+1
2 |+ . . .+ |Xi,i+1

p −Ri+1|, (4.4)

running from one bead to the next via a sequence of p entanglement points. Beads may slide

along an entanglement point, thereby causing the entanglement point to slip from one bond

to the next. An entanglement point survives until the two involved bond paths disentangle,
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at which occasion the entanglement point is annihilated. The positions of the entanglement

points are recalculated every time step by minimizing the elastic energy stored in the bonds,

subject to fixed blob positions. The forces exerted by the entanglements on the blobs, by

means of the bond energy φ bond(Li,i+1), are included in the equation of motion of the blobs.

The interested reader is referred to Padding and Briels [44] for further details on the TWEN-

TANGLEMENT algorithm. We have recently extended this algorithm to simulate branched

polymers. The modifications, an extensive set of rules governing the slip of an entanglement

point over the branching point and a stiffening of the bending potential at the branch point,

are discussed and validated by simulations in Ref. [46]. An application of this algorithm to

symmetric stars is presented in chapter 3, where it is observed – in agreement with theory and

experiments [36, 61, 81, 82] – that the viscosity of a melt of stars scales exponentially with

the mass of the stars, in contrast with the linear scaling for linear polymers.

All simulations were performed in cubic boxes with periodic boundary conditions. Typ-

ical boxes contained 80 to 100 polymers, at a density of ρ = 0.761 g/cm3. The friction

coefficient was set at ξ = 32.0 ps−1, in combination with a time step dt = 0.4 ps. A tempera-

ture of T = 450 K ensured that the systems are in the melt phase. In addition to the T-shaped

B(Bm)(B7)2 and the Y-shaped B(Bm)(B3)2 polymers, with m = 3, 5 and 7, we also simulated

linear polymers Bn, with n = 7, 9, 11, 13, 16, 19 and 22, for comparison purposes.

4.2.2 Analysis methods

The dynamical properties of the branched polymers are analysed in several distinct ways.

Diffusion coefficients are extracted from the mean square displacement (MSD)

D(t) =
1

6t

〈
|Rcom

i (t)−Rcom
i (0)|2

〉
, (4.5)

with Rcom(t) the center of mass position of polymer i at time t, and the pointed brackets

indicating an average over all times and polymers. Arm dynamics is analyzed by the auto-

correlation

fbe(t) =
〈

δLeb
i (t)δLeb

i (0)
〉

(4.6)

of arm length fluctuations δLeb
i (t) = δLeb

i (t)−〈Leb
i 〉, with the instantaneous length Leb

i (t) of

an arm measured as the direct distance from the branch point Rb
i to the end point of the arm

Re
i .
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The central rheological property in this study is the stress relaxation function, which is

calculated from the thermal fluctuations of the stress tensor,

G(t) =
V

kBT
〈σαβ (t)σαβ (0)〉. (4.7)

Here V is the total volume of the simulation box, α and β are two distinct Cartesian direc-

tions, and the microscopic stress tensor is given by

σαβ =− 1

V ∑
i, j
(yi,β − y j,β )Fi j,α , (4.8)

where i and j run over all entities – blobs and entanglement points – in the box, yiα denotes

the α th coordinate of the ith entity, and Fi j,α is the α component of the force on entity i exerted

by entity j. Since the signal to noise ratio of the stress relaxation function strongly decreases

with t, the late-time plots have been smoothed by block-averaging,

Ḡ(t) =
∫ Δ

−Δ
G(t + τ)w(τ)dτ. (4.9)

In view of the logarithmic time axis in these figures, the normalized weight function was

selected as w(τ)dτ ∝ d ln(τ) and the block width Δ increased exponentially with t. To facili-

tate the comparison with experimental data, we also calculated the Fourier transforms of the

stress relaxation function,

G′(ω) = ω
∫ ∞

0
sin(ωt)G(t)dt, (4.10)

G′′(ω) = ω
∫ ∞

0
cos(ωt)G(t)dt, (4.11)

which are known as the storage and loss moduli, respectively. These integrals were calculated

using the raw data G(t) up to the first appearance of negative values; for larger times, G(t) was

approximated by a single decaying exponential fitted to the tail region of the block-averaged

Ḡ(t).

4.3 Results and Discussion

4.3.1 T-shaped polymers

In the simulated T-shaped polymers, a side chain of 3, 5 or 7 beads is attached to the central

bead of a linear backbone of 15 beads, see Fig. 4.1. The former two side chains generate
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Figure 4.2: Time dependent diffusion coefficients of three T-shaped polymers (solid lines) and

two linear polymers (dashed lines). The shortest linear polymer is of comparable length to

the back bone of the T-shaped polymers, the longest linear polymer has the same mass as the

largest T-shaped polymer, i.e. the symmetric star B(B7)3.

asymmetric stars, the latter side chain creates a symmetric star. The time dependent diffusion

coefficients of these three stars are plotted as solid lines in Fig. 4.2, where they are seen

to steadily decline over time. As expected, the diffusion coefficient decreases as the side

arm becomes longer. Comparing the T-shaped polymers with linear polymers, included as

dashed lines in Fig. 4.2, highlights the impact of the side arm. The three-bead side arm of

B(B3)(B7)2 has roughly halved the polymer’s diffusion coefficient relative to a melt of the

backbones alone, as represented by the linear B16 polymer. Whereas these polymers are both

expected to reptate in a single tube, shown as Fig. 4.3(a) and (b) – the short side chain is

estimated at less than halve the entanglement length – the enhanced friction due to the side

arm proves an impediment for the diffusive motion along the tube. With increasing length of

the short arm, the diffusion of the T-shaped stars will gradually change from being dominated

by reptation along the backbone tube, to being dominated by branch point hopping. Fig. 4.2

shows that the diffusion coefficient drops substantially with increasing length of the short

arm.

Figure 4.4 shows the relaxation dynamics of the short and long arms of the T-shaped
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Figure 4.3: Cartoons illustrating the shape of the tube (dashed lines) surrounding polymers

(thick black lines, with dots highlighting end points and branching points) of various topolo-

gies: a) linear polymer, b) T-shaped polymer with two long and one short arm, c) a star

polymer with three long arms, and d) Y-shaped polymer with one long and two short arms.

polymers. The rapid transient relaxation of the arm length is attributed to length fluctuations

within a constant arm configuration (short arms) or within a fixed confining tube (long arms),

i.e. contour length fluctuations. The subsequent slow decay of the arm length is attributed

to transitions of the arm configuration (short arms) or of the confining tube (long arms).

Evidently, the long-time relaxation times of the arms increase with increasing arm length,

but they also depend on the length of the short arms, as is clear from the relaxation of the

length of the 7-blob arms in the three different T-shaped polymers. This effect results both

from mechanical coupling within the molecule, since the arms are covalently bond at the

branch point, and from the dynamics of the arms of adjacent molecules in the melt, as these

arms contribute to the confinement of the arms of the primary polymer. For the symmetric

star with arms of 7 blobs, the relaxation time τ7 of the arm length is about 0.8 μs. The

distinction of time scales exhibited in Fig. 4.4 can also be discerned in Fig. 4.5, which shows

that the typical time evolution of the length of an arm, in melts of B(B7)3, is a superposition

of fast and slow dynamics. The time evolution shown here suggests that the relaxation of

the arm length is largely determined by transitions between stable states, which live for a

few tenths of microseconds in rough agreement with τ7 =0.8 μs, and indicative of changes

of the tube of the arm. Complete retraction of the arms, which is here operationally defined

as the arm length being less than 10% of its average length, occurs about once every 105
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Figure 4.4: Relaxation of the arm length, from branch point to end point, of the short arm

(solid lines) and the long arms (dashed lines) of three T-shaped polymers, as calculated by

Eq. (4.6).

picoseconds. Attempts to correlate arm retraction to displacements of the branch point have

not been successful, the main reason being that the effect is not yet very pronounced with

arms barely longer than one entanglement length. In spite of this, it is fair to say that the slow

convergence of the diffusion coefficient in Fig. 4.2 and the long tail of the stress relaxation

(to be discussed next) are both attributable to the limited number of arm retractions sampled

over the course of a 4 μs simulation. The importance of arm retraction is further supported

by the observation that the two comparable linear polymers, whose motion does not rely

on arm retraction, have converged to their long-time behaviour – constant D(t) in Fig. 4.2

and exponentially decaying G(t) below – well within 1 μs, whereas the T-shaped polymers

require a considerably longer time.

The stress relaxation function G(t) up to the 20 ns timescale is shown in Fig. 4.6. The

plot reveals clear differences between T-shaped and linear polymers, exceeding the variations

within these two sets. At t = 0 the branched polymers have a higher G(t) than the linear

polymers, but by 0.2 ns this order has inverted. The transient relaxation of the T-shaped

polymers is quicker than that of the linear polymers because the former have one additional

chain end that can move around and relax the local strain relatively easily in comparison to
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Figure 4.5: Typical time evolution of the length of a long arm in a melt of B(B7)3. Arm

lengths of less than 10% of the average arm length, the dashed red line, are exceedingly

rare; the plot shows about ten of these ‘arm retraction’ events, marked by red dots, in a time

interval of 4 μs.

the more slowly relaxing mid-chain segments. In the next time regime, between 1 and 20 ns,

a power law behaviour is observed with a power of about -0.5. The T-shaped polymer with

the shortest side arm decays the quickest, and the power slightly increases (becomes less

negative) as the side chain becomes longer.

The stress relaxation Ḡ(t) on the long time scale, from 10 ns to 1 μs, is presented in

Fig. 4.7, were block-averaging has been invoked to improve the signal-to-noise ratio – an

example illustrating the raw data can be found in Fig. (3.1) of this thesis. The near power law

decay of G(t) for the linear polymers, as observed in Fig. 4.6 for times exceeding ∼ 1 ns, is

seen to gradually turn into a faster exponential decay with increasing time. For the T-shaped

polymers, especially those with the longer side chains, this transition is weaker and/or shifted

to larger times. At around 0.4 μs the stress relaxation curves of B(B5)(B7)2 and B(B7)3 are

seen to re-cross the stress relaxation curve of the linear polymer with a comparably long back-

bone, i.e. B16. No re-crossing is observed for the T-shaped polymer with the shortest side

chain, however, which continues to relax at approximately the same rate as this linear poly-

mer. The presence in the B(B3)(B7)2 melt of short, non-entangled and hence relatively agile
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Figure 4.6: Short time stress relaxation G(t) in melts of T-shaped polymers (solid lines) and

melts of linear polymers (dashed lines), showing the raw data sampled at intervals of 40 ps.
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Figure 4.7: Stress relaxation functions Ḡ(t) for three T-shaped polymers (solid lines), and

two linear polymers (dashed lines). To suppress the strong noise, which is already visible on

the right hand side of Fig. 4.6 and will gain in relative size as G(t) continues to decay with

increasing time, the raw data sampled at 40 ps intervals have been block averaged using the

procedure of Eq. (4.9).
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Figure 4.8: Storage and loss moduli of three T-shapes polymers (solid lines) and two linear

polymers (dashed lines). For clarity, the curves have been shifted vertically by the multipli-

cation factors indicated next to the lines.

side chains enables relatively fast local relaxations, resulting in even faster decay than with

the linear chain of longest span. In spite of this effective ‘dilation’ of the tube, see Fig. 4.3(b),

confining the motion of the backbone, the diffusion coefficients of Fig. 4.2 indicate that the

friction incurred by the presence of the short side chain makes this branched polymer diffuse

slower than the matching linear polymer. With increasing side chain length, the side chain

mobility decreases and also the capability of fast local stress relaxation. When the side chain

can form sufficient entanglements to acquire a tube of its own, the dominant diffusion mecha-

nism of the T-branched polymer changes from reptation to arm-retraction followed by branch

point hopping. This will slow down the diffusion as well as the stress-relaxation. In view of

the shoulder starting to develop in Fig. 4.7, it is tempting to speculate that the 5 and 7 bead

side-chains are on the threshold to having their own tubes as shown in Fig. 4.3(c).

The storage and loss moduli calculated from the stress relaxation functions are presented

in Fig. 4.8. A striking feature is the coalescence, over approximately two decades in fre-

quency space, of G′ and G′′ for the T-shaped polymers. We note that the power law behaviour

G(t) ∝ t−1/2, as observed in Figs 4.6 and 4.7, gives rise to G′(ω) = G′′(ω) ∝ ω1/2, in agree-

ment with the coalescence and slope in Fig. 4.8. Experimental data for three-armed stars,
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Figure 4.9: Time-dependent diffusion coefficients of three Y-shaped polymers (solid lines), as

well as two linear polymers (dashed lines) with equal backbone length or (nearly) equal total

weight to the largest Y-shaped polymer.

and stars in general [14, 31, 61, 103], show G′ and G′′ crossing each other at the terminal

crossing point. With increasing frequencies, although not running in parallel, the two curves

continue with slopes much less disparate than for linear polymers of corresponding masses.

We attribute the differences between the simulates and the experimental curves to the large

difference in the lengths of the polymers being analyzed.

4.3.2 Y-shaped polymers

The simulated Y-shape polymers, see Fig. 4.1, combine two short arms of three blobs each

with one longer arm of 3, 5 or 7 blobs. Alternatively, these polymers may be viewed as

linear chains of 7, 9 or 11 blobs with a side chain of 3 blobs attached to the fourth backbone

blob. The smallest of these polymers is a symmetric star, with arms of three beads each.

Figure 4.9 shows that the time-dependent diffusion coefficients of these polymers converge

to stationary values within about 0.1 μs. In our earlier work [46], we noted that the diffusion

coefficient of the symmetric star B(B3)3 was very similar to that of a linear polymer of equal

mass, B10. Comparing the largest of the Y-shaped polymers against two linear polymers, of
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Figure 4.10: Short time stress relaxation in melts of Y-shaped polymers (solid lines) and in

melts of linear polymers (dashed lines), showing raw data sampled at intervals of 40 ps.
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Figure 4.11: Long time stress relaxation in melts of Y-shaped polymers (solid lines) and in

melts of linear polymers (dashed lines). The smooth function Ḡ(t) was obtained by the block

averaging, see Eq. (4.9).

equal backbone length B11 and of (nearly) equal mass B13, respectively, we here find that

the Y-shaped polymer is the slowest of the three, but the difference is smaller than in the

similar comparison of T-shaped polymers in Fig. 4.2. All three D(t) curves also converge
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Figure 4.12: Storage and loss moduli for three Y-shaped polymers and two linear polymers.

For clarity, the curves have been shifted vertically using the scaling factors indicated next to

the curves.

on the same time scale, suggesting that the Y-shaped polymer behaves like a linear polymer.

Because the side chains are short, the Y-shaped polymers effectively reptate in a tube like a

linear polymer, with the side chain increasing the friction near one tube end, see Fig. 4.3(d).

The Y-shaped polymers also follow the short time stress relaxation of their matching

linear polymers more closely, see Fig. 4.10, than the T-shaped polymers follow their matching

linear polymers, in Fig. 4.6. Tube dilation by the short – and hence relatively agile – chains at

the Y end of the polymers makes B(B7)(B3)2 relax slightly quicker than the linear polymers

of equal backbone length. Like the linear polymers, but unlike the T-shaped polymers, the

Y-shaped polymers deviate from power law behaviour in the short time stress relaxation.

For larger times, see Fig. 4.11, the stress relaxation of the larger Y-shaped polymers slows

down relative to the linear polymer of equal mass, and their respective Ḡ(t) curves cross,

but this slowing down is far less pronounced than for the larger T-shaped polymers. The

storage and loss moduli of the Y-shaped polymers are presented in Fig. 4.12. Unlike for the

T-shaped polymers in Fig. 4.8, a clear crossing point is observed for all polymers, with the

angle between the two crossing functions gradually decreasing with increasing chain length.
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4.4 Conclusions

In this chapter we mainly demonstrate the dynamical and rheological trend of asymmetric

stars. Those asymmetric stars are built in two types, one has a short backbone and one

long asymmetric arm, also called Y-shaped asymmetric star; the other one is called T-shaped

asymmetric star where the backbone arms are shorter than the asymmetric arm. For both

of the cases, by calculating the autocorrelation function of the asymmetric arms, as can be

expected, it is found that the longer arm has a slower relaxation decay.

The asymmetric star diffusive and rheological properties are studied by measured the dif-

fusion coefficients and stress relaxation modulus. Results are presented by the comparisons

with both linear and symmetric star topologies. It is found that for asymmetric stars with the

same backbone chain, by increasing the asymmetric arm length, stars feel more and more

branch point constraints that they behave a slower diffusion and relaxation than correspond-

ing linear chains, this trend is shown clearer to the asymmetric star with longer backbone

chain.

In this work, it is clear to see that within our current simulation runtime, the relatively

long linear or star polymers with arms in high molecular mass are not fully diffused or well

relaxed. Extra simulation time are still needed for those polymers to get better statistics.
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5
Coarse Grain Forces in Star

Polymer Melts

An analysis is presented of forces acting on the centers of mass of three-armed

star polymers in the molten state. The arms consist of 35 Kremer-Grest beads,

which is slightly larger than needed for one entanglement mass. For a given con-

figuration of the centers of mass, instantaneous forces fluctuate wildly around

averages which are two orders of magnitude smaller than their root mean square

deviations. Average forces are well described by an implicit many-body poten-

tial, while pair models fail completely. The fluctuating forces are modelled by

means of dynamical variables quantifying the degree of mixing of the various

polymer pairs. All functions and parameters in a coarse grain model based on

these concepts are obtained from the underlying small scale simulation. The

coarse model reproduces both the diffusion coefficient and the shear relaxation

modulus. Ways to improve the model suggest themselves on the basis of our

findings.

5.1 Introduction

Polymer melts and solutions exhibit dynamics on a wide range of time and length scales.

The individual atoms move at time scales of picoseconds while groups of atoms move on

time scales of nanoseconds. In an entangled system whole chains can move only by rep-

tation [36, 63] while branched polymers move by arm retraction followed by displacements

of the branch points [110]. Time scales corresponding to these processes are microseconds
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or longer. Different experimental techniques are needed to investigate different length and

time scales. Neutron spin echo techniques may be used to study time scales up to a few hun-

dred nanoseconds, while mechanical spectroscopy typically probes time scales larger than

miliseconds.

Also computational studies of polymer systems require different models to investigate

different time and length scales. This is not only due to computational limitations, but also re-

sults from the physicists wish to develop concepts and understanding on the basis of minimal-

istic models [41, 115]. If one wants to understand chemical aspects, clearly atomistic [116]

or slightly coarse grained [117] models are needed. On the other hand, if one wants to

understand long time motions of polymer chains, what matters are chain connectivity and

uncrossability. The minimalistic model in this case is the famous Kremer-Grest model [93],

which has been used to understand how and why properties change with changing lengths of

the chains. Several other models have been developed to handle even longer time scales by

resorting to even coarser descriptions [44–46, 118].

In recent years, we developed a model that intends to go even one step further than the

models described above. Where the models described above are used to investigate material

properties, we intend to devise a model that is capable of describing flow of polymer sys-

tems, or soft matter in general, in complicated geometries. This is the realm where usually

computational fluid dynamics (CFD) methods are used based on one out of many constitutive

models [2,119] governing the relation between stresses and velocity gradients. Such models,

however, are applicable only in their own limited ranges of experimental conditions. For ex-

ample in polymer solutions, one may expect strong correlations between concentrations and

velocity gradients [120,121]. Such couplings and the instabilities they give rise to are absent

in the usual constitutive models, with only very few exceptions.

In order to allow for simulations of very large systems, the model that we developed is

necessarily very coarse. Each polymer is represented by one single point particle [122]. Obvi-

ously these particles must be dressed with additional properties in order to take into account

the response of all eliminated degrees of freedom to the ever changing circumstances pro-

vided by the configurations of the polymer positions and their histories [50]. This is reflected

in the name of the model, i.e. responsive particle dynamics (RaPiD). The model is developed

such that it automatically conserves the exact thermodynamic properties of the underlying
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real system. Moreover, by being a particle based simulation model, it automatically allows

for concentration gradients and fluctuations necessary to initiate possible flow instabilities.

Until now we have applied the model by tuning its various parameters to experimental

data [58,123–127]. In order to further test the model and investigate its conceptual soundness

we want to directly calculate its various functions and parameters from data generated by a

small scale simulation. The degree to which this is possible and the quality of its predictions

are the subject of this paper. In Section 5.2 and Section 5.3 we describe the model and the

ratio behind its particular structure. In Section 5.4 we describe how we intend to calculate

the RaPiD functions and parameters from the data obtained with a small scale simulation.

The small scale system in this case is a three arm star polymer melt built from Kremer-

Grest polymers under melt conditions. In Section 5.5 we shortly describe this model and

its simulation. In Section 5.6 we present our results of mapping the small scale simulation

results on our coarse RaPiD model. Finally we present a summary and some conclusions in

Section 5.7.

5.2 Coarse graining

In this section we collect some pertinent information about coarse graining. In order not to

make the discussion unnecessary complicated by presenting the most general equations, we

illustrate the coarse graining procedure by applying it to a melt of star polymer.

We consider a melt of N star polymers in a volume V. Each polymer consists of a central

bead, also called branch point, to which f arms of m beads each are connected. The mass

of the polymer is M = m f + 1. At the coarse level we want to describe the configuration

of the melt by a set of N position vectors �Rn, while all other degrees of freedom will be

eliminated from the description. The elimination should be done such that as many properties

as possible of the original system are described correctly by the coarse model. In particular,

we would like to retain the correct dynamics and the correct thermodynamics of the system.

Obviously, properties which are defined in terms of the eliminated degrees of freedom cannot

be calculated from the trajectories of the coarse model.

There are two natural choices for �Rn, either the position of the branch point of star n, or

the position of its center of mass. In this paper we adopt the second definition, i.e. �Rn denotes
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the center of mass position vector of the n′th star. The reason for this is that with this choice

�Rn doesn’t accelerate in case the total force acting on the star is zero. A second reason for

this choice is that the motion of the centers of mass is much smoother than that of the branch

points.

Let us first consider the Hamiltonian of our system. Denoting �xni the position vector of

the beads, with n numbering from 1 to N and i from 0 to m f and�xn0 being the position vector

of the central bead of the n′th star, we define

�Rn =
1

M

m f

∑
i=0

�xni. (5.1)

�qni = �xni −�Rn, i = 1, ...,m f . (5.2)

The Hamiltonian may then readily be shown to be

H =
1

2M

N

∑
n=1

�P2
n +

1

2

N

∑
n=1

m f

∑
i=1

�p 2
ni −

1

2M

N

∑
n=1

(
m f

∑
i=1

�pni)
2 +V (R,q). (5.3)

with

�Pn = = M�̇Rn. (5.4)

�pni = = �̇qni +
m f

∑
j=1

�̇qn j. (5.5)

R denotes the set of all vectors �Rn and q the set of all vectors�qni; a dot over a symbol denotes

a time derivative and V (R,q) is the potential energy of the configuration (R,q).

Since the kinetic energy does not depend on (R,q), we have

�̇Pn =− ∂H
∂�Rn

=− ∂V
∂�Rn

. (5.6)

The general strategy of coarse graining is to manipulate the force in the right hand side such

that the contributions of all �pni and �qni are lumped into a few functions that can easily be

modeled. The first step is to separate the average force [128], so

− ∂V
∂�Rn

=−
〈

∂V
∂�Rn

〉
B

+ �Gn. (5.7)

The pointy brackets 〈· · · 〉B denote an average over all �pni and �qni; �Gn is what remains of the

force.

In the next two sections we will describe the two contributions to the force.
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5.2.1 Potential of mean force

The average force introduced in Eq. (5.7) is defined as

−
〈

∂V
∂�Rn

〉
B

=− 1

Q

∫
dq

∫
d pe−βH ∂V

∂�Rn
. (5.8)

where
∫

dq indicates an integral over all �qni and
∫

d p an integral over all �pni; moreover

Q =
∫

dq
∫

d pe−βH . Since the kinetic energy in Eq. (5.3) does not depend on any of qni, the

integrals over p lead to constant factors which cancel in the numerator and the denominator,

so

−
〈

∂V
∂�Rn

〉
B

=− ∂Φ
∂�Rn

. (5.9)

where

Φ(R) =−kBT ln

∫
dqe−βV (R,q). (5.10)

We call Φ the potential of mean force. Apart from some uninteresting constants, it is equal

to the free energy of the�qni in a field produced by the interactions with the fixed �Rn.

Once we have completed our manipulations of �Gn in the next section, we will find that a

simulation of the coarse system samples the probability distribution

P(R)∼ exp{−βΦ(R)}. (5.11)

This implies that all thermodynamic properties obtained from simulations of the coarse model

derive from the free energy

A =−kBT ln

∫
dRe−βΦ(R). (5.12)

Introducing the definition of Φ(R) we obtain

A =−kBT ln

∫
dR

∫
dqe−βV (R,q). (5.13)

Apart from some constants resulting from integrals over all momenta and from a factor

(h3NN!)−1 in the partition function, A is the exact free energy of the microscopic system

[129].
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Whether or not we are able to obtain the exact thermodynamics from a coarse model

depends on our ability to find a functional form describing Φ(R) for all configurations that

contribute to the integral in Eq. (5.12), i.e. whether we are able to faithfully represent Φ(R).

The usual approach is to assume that Φ(R) may be approximated as a sum of contributions

from each pair of polymers

Φ(R) =
N−1

∑
i=1

N

∑
j=i+1

φ(Ri j). (5.14)

Besides applying the pair approximation we have assumed that each contribution depends

only on the distance between the two polymers that constitute the pairs. In the case of

star polymers, explicit expressions for φ(Ri j) have been presented by Löwen, Likos and

co-workers [130, 131]. For our case, i.e. stars with a functionality of three, they write:

φ(r) =−5

8
kBT f 3/2[ln(

r
σs

)− 1

2τ2σ2
s
], r ≤ σs

=−5

8
kBT f 3/2 1

2τ2σ2
s

exp{−τ2(r2 −σ2
s )}, r > σs.

(5.15)

Here τσs = 1.06 and σs =
4
3 Rg, with Rg the radius of gyration of the star. In our case f = 3.

It is clear that with a functionality as low as three, when the arms are very long, each

polymer will interact with many other polymers, not just with its first neighbours. In this

situation we may expect many-body interactions to be important. It is well known that it is

very difficult to collect information about many-body contributions to the potential energy,

free energy in our case, and to develop some intuitive understanding. Therefore, stimulated

by the literature on density functional methods [132] and the work of Pagonabarraga and

Frenkel [133], in recent years we have made extensive use [123, 124, 127] of an implicit

many-body potential in which Φ(R) is written as

ΦFH(R) = ∑
i

a(ηi(R)). (5.16)

Here ηi(R) is the local volume fraction of polymers at the position �Ri defined below; a(η)

is the free energy of one polymer in a melt of volume fraction η . The contribution of the

translational configurations of the centers of mass must be excluded from ΦFH(R). When

calculating the Flory-Huggins free energy ΦFH(R) we treat the star polymer as being equiva-

lent to a linear polymer consisting of p Kuhn lengths, obtaining

a(η) = kBT p{1−η
η

ln(1−η)−χη}. (5.17)
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The Flory-Huggins parameter χ accounts for minus the interaction energy between two Kuhn

lengths.

The local volume fraction of polymers is defined as

ηi(R) =
1

ρmax
∑
j �=i

w(Ri j). (5.18)

where w(Ri j) is a normalized weight function, i.e.
∫

d3Rw(R) = 1, implying that for a random

distribution of polymers ∑ j w(Ri j) = N/V = ρ̄ . It has been argued by Trofimov et al. [134]

that the sum in Eq. (5.14) should exclude the term when j = i.

Because of crowding near the branch point we expect that each polymer excludes the

others from approaching very closely. We therefore add short-range repulsive pair potentials

to the Flory-Huggins potential obtaining

Φ(R) = ΦFH(R)+
N−1

∑
i=1

N

∑
j=i+1

φ rep(Ri j). (5.19)

Notice that here it might have been better to let Ri j be the distance between two branch points

instead of the distance between two centers of mass.

5.2.2 Transient forces

The thermodynamic forces described in the previous section provide a reasonable estimate of

the exact instantaneous forces only in case the dynamics of the eliminated degrees of freedom

is much faster than that of the retained degree of freedom. As an example one may think of

hard sphere colloids dissolved in a solution of small polymers which move much faster than

the colloids. The forces exerted by the polymers on the colloids are well represented by

depletion forces between the colloids. The remaining forces defined in Eq. (5.7) are then

simple friction forces and corresponding random forces.

The situation is completely different in cases when the eliminated degrees of freedom are

not much faster than the retained degrees of freedom, for example when the relaxation of

the arms of a star polymer towards equilibrium is not much faster than the time scales during

which the centers of mass of the polymers diffuse over length scales comparable to their sizes.

In these cases, knowledge of the positions (and momenta) of the centers of mass of the stars

give little or no information on the state of the eliminated degrees of freedom. The system can
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arrive at one and the same coarse state (R,P) in many different ways distinguished by many

different states (q, p) of the arms and different instantaneous forces on the centers of mass.

The only way to obtain some information about the state of the arms by interrogating the

configurations of the centers of mass, is to keep track of its full history. This is why the mori-

Zwanzig projection [128, 135] operator formalism leads to very complicated friction forces

with memory and corresponding random forces. One way to model these friction forces is

to define additional variables which give a rough description of the states of the arms and to

provide a propagator which describes its dynamics. This is what we will do next.

We assume [50] that with every configuration R of the centers of mass we may associate

a thermodynamic equilibrium state of the arms, and that this state may be characterized by

a collection of numbers {n0(Ri j) | Ri j ≤ Rc}. The free energy of this state is equal to the

potential of mean force discussed in the previous section. We next introduce a collection of

dynamical variables {ni j | Ri j ≤ Rc} and let the deviations of these numbers from the corre-

sponding equilibrium numbers, i.e. {ni j − n0(Ri j) | Ri j ≤ Rc}, describe the deviation from

equilibrium. We call ni j the contact numbers between stars i and j, and n0(Ri j) the corre-

sponding equilibrium contact number. Other names, like mixing number or entanglement

number, have also been used. The contact numbers must be thought of as thermodynamic

variables like the variables used in Landau-de Gennes types of theories. Finally, we assume

that the free energy for a given configuration R of the centers of mass and with the contact

numbers constrained to the values n = {ni j} is given by

A(R,n) = Φ(R)+
1

2
α

N−1

∑
i=1

N

∑
j=i+1

{ni j −n0(Ri j)}2, (5.20)

where ni j and n0(Ri j) are non-existent when Ri j > Rc. The force on polymer i is now

�Fi = − ∂A
∂�Ri

+ �G
′
i

= − ∂Φ
∂�Ri

+α ∑
j
{ni j −n0(Ri j)} dn0

dRi j

�Ri j

Ri j
+ �G

′
i (5.21)

Notice that �G
′
i is different from �Gi in Eq. (5.7). The second term in Eq. (5.21) is called the

transient force �Ft
i for reasons explained in the next section. Notice that α may be called the

strength of the transient forces.
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In the next section we will present a propagator which samples from the distribution

P(R,n)∼ exp{−βA(R,n)}. (5.22)

Suppose we are only interested in the distribution of the centers of mass, i.e. we integrate

P(R,n) over all values of n, we obtain

P(R) =
∫

dnP(R,n)∼ exp{−βΦ(R)}. (5.23)

This means that all structural and thermodynamic properties of the system are the same as

before the introduction of the transient forces.

We now turn to the propagator.

5.3 Brownian dynamics

We assume that with the introduction of the transient forces all memory effects are taken into

account. The remaining forces �G
′
i on polymer i are then simple friction forces and correspond-

ing Markovian random forces. Markovian means that the random forces are δ -correlated in

time.

Since soft matter systems are usually overdamped, we ignore momenta and make use of

a simple first order propagator. For simple Markovian systems Ermak and McCammon [136]

have shown how to derive the Brownian propagator from a second order Langevin equation.

Here we simply pose the result

d�Ri =− 1

ξi

∂A
∂�Ri

dt +
∂

∂�Ri

kBT
ξi

dt +

√
2kBT dt

ξi
�Θi. (5.24)

Here d�Ri is the displacement of particle i during a time-interval from t to t +dt. On the right-

hand side ξi is the friction coefficient of particle i, which depends on the configuration at time

t, and �Θi is a random vector associated with particle i at time t. �Θi is independent of random

vectors associated with other particles and independent of random vectors at other times than

time t; moreover the components of�Θi are uncorrelated and have zero mean and unit variance.

The second term in the right hand side of Eq. (5.24) is needed to ensure, together with the

propagator for the contact numbers, the correct equilibrium distribution Eq. (5.22).
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In principle, we have some freedom in choosing the propagator for the contact numbers.

However, if we want to have the equilibrium distribution as the stationary solution, we are

forced to use [50]

dni j =− 1

ξ̃
∂A
∂ni j

dt +

√
2kBT dt

ξ̃
Θi j. (5.25)

Here dni j is the increment of ni j during a time interval of length dt. ξ̃ is a friction similar

to the one in the propagator for �Ri. It is taken to be independent of the ni j. In previous

applications it was sometimes assumed to depend on Ri j, but in this paper it will be constant.

Finally Θi j is a random number associated with the pair i j at time t, uncorrelated from any

other random numbers and having zero mean and unit variance.

In the following we will replace ξ̃ by ατ where τ has the dimension of time (do not

confuse τ with the one in Eq. (5.15)). Performing the differentiation in Eq. (5.25) we obtain

dni j =−ni j −n0(Ri j)

τ
dt +

√
2kBT dt

ατ
Θi j. (5.26)

i.e. a simple kinetic equation with a random contribution. If we consider the contact vari-

ables as thermodynamic variables, then Eq. (5.26) resembles the evolution equation used in

irreversible thermodynamics [137] with 1/τ being the Onsager coefficient.

Suppose we fix the centers of mass �Ri, then the contact numbers will gradually decay

towards their equilibrium values and finally fluctuate around the latter. This is why the �Ft
i

are called transient forces. The physical picture is that always the contact numbers decay

towards their equilibrium values, but that the latter continually change due to displacements

of the particles.

Since our model consists of structureless particles, there are only two timescales in our

model. One is set by the thermodynamic forces, derived from the potential of mean force,

and the friction coefficient ξ0 in Eq. (5.35). The other is similarly set by the strength of

the transient forces and the corresponding friction ξ̃ , i.e. by τ = αξ̃ . The rheology of the

model will therefore closely resemble a two-time Maxwell model. If one wants to introduce

a continuous range of characteristic times, this may be done by making τ dependent on the

distance between the contacting polymers, for example according to [138]

τ(Ri j) = τe−Ri j/λ . (5.27)
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In the present application we will restrict ourselves to constant τ(Ri j) = τ , i.e. to λ = ∞. We

leave a more realistic description for future investigations.

In case we want to calculate the parameters and functions in our coarse model, we must

choose a mechanical interpretation of the contact numbers, in particular we must present a

mechanical definition of ni j. This we will do in the next section.

5.4 Coarse parameters from small scale simulations

In this section we describe our choices for the functions introduced in the previous section

and how they will be obtained from a small scale simulation.

We start with the description of functions and parameters appearing in the Flory-Huggins

free-energy. In this work we adopt the weight function introduced by Santos de Oliveira et

al. [123]:

w(Ri j) =C(Rc −Rs)(Rc +Rs −2Ri j), Ri j ≤ Rs

=C(Ri j −Rc)
2, Rs < Ri j ≤ Rc

= 0 Rc < Ri j.

(5.28)

Here C takes care of the normalizations. Rc and Rs are two adjustable parameters. In earlier

work by Kindt and Briels it was found that a linear weight function performs best; the second,

quadratic regime has been included to smoothen the function at Ri j = Rc. Since each polymer

has no direct knowledge of things happening at a distance larger than a few times its radius of

gyration Rg, we expect that Rc � 2.5Rg; around this value Rc and Rs may be used as adjustable

parameters. Besides these, there are three more parameters, i.e. ρmax, p and χ , that will be

treated as adjustable parameters. All three of them may be roughly estimated on the basis of

their physical meaning. The range within which these parameters can be varied is therefore

very small.

Next we consider the transient forces. Our intuitive picture of equilibrium between two

nearby star polymers is that their arms are mixed such that there is a well defined number of

contacts between the beads from one polymer with those from the other polymer. In general

the number of contacts between two stars in equilibrium with each other will decrease with

the distance between the stars. If we quickly bring two stars in equilibrium closer together,
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it will take some time for the stars to adjust to the new situation and to increase their mu-

tual contacts. During this time the stars are out of equilibrium. Similarly on increasing the

distance between two stars it takes some time before the stars have decreased their mutual

contact number. Again, during this period the stars are out of equilibrium. From this picture

it emerges that a decent definition for ni j might be

ni j =C∑
k

∑
l

XΔ(|�xik −�x jl |). (5.29)

with

XΔ(r) = 1, r ≤ Δ

= 0, r > Δ (5.30)

This indeed is the definition that we adopt. The constant C will be defined below. Other

definitions may be conceivable depending on the application. In particular it would be useful

for linear polymers to define ni j such that it captures the number of topological constraints

between polymers i and j.

Given a working definition to calculate ni j, we may calculate n0(Ri j) from an equilib-

rium simulation of the small scale system. To this end, for each frame of the small scale

equilibrium run, we run through all pairs, calculate their ni j and Ri j , and put ni j in the bin

corresponding to Ri j. Finally we average the values of ni j in each bin independently. In this

paper we will normalize n0(Ri j) such that n0(0) = 1; this fixes the constant C in Eq. (5.29).

The reader must be aware that different normalizations lead to different values of α . With

this normalization, we will find that n(Ri j) is rather insensitive for the precise value of Δ in

Eq. (5.29).

In a similar way we calculate the variance 〈(ni j −n0(Ri j))
2〉 for every bin, and next cal-

culate α from the equipartition theorem

〈(ni j −n0(Ri j))
2〉= kBT

α(Ri j)
. (5.31)

which may be obtained with the use of Eq. (5.16). Notice that here we assume that α may

depend on Ri j. This will actually turn out to be true. Since our intention is to only give a

proof of principle of the methods presented in this paper we will ignore this fact and take α

to be constant.
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Finally we must calculate ξi and τ . As already mentioned, in a simulation with fixed

centers of mass the contact numbers ni j will initially decay towards their equilibrium values

and then fluctuate around them. This allows for two possible ways to calculate τ . First, we

may keep track of the individual time evolutions Δni j(t) = ni j(t)− n0(Ri j) right after the

centers of mass have been fixed, and average these curves for all pairs (i, j), after dividing

by Δni j(0). According to Eq. (5.26) the result will be e−t/τ . Because not all of the sampled

functions are equally relevant from a statistical point of view, we introduce a weight wi j with

every pair (i, j) when we average over pairs, so

∑
〈i, j〉

Δni j(t)
Δni j(0)

wi j = e−t/τ . (5.32)

It is clear that pairs for which the absolute value of Δni j(0) is large should have a larger

weight than those for which the absolute value of Δni j(0) is small. Therefore we adopt a

weight wi j proportional to Δni j(0)
2. This then leads to

1
Np

∑〈i, j〉 Δni j(t)Δni j(0)

1
Np

∑〈i, j〉 Δni j(0)2
= e−t/τ . (5.33)

Here Np is the number of pairs occurring in the sum over pairs. A second approach might be

based on Onsager’s regression hypothesis [139,140], which says that equilibrium fluctuations

on average decay according to the corresponding macroscopic laws. As a result

〈Δni j(t)Δni j(0)〉
〈Δni j(0)2〉 = e−t/τ . (5.34)

Here, 〈· · · 〉 indicates an average over initial times followed by an average over pairs. Notice

the similarity between both methods. Here we adopt the first method since it is computation-

ally less demanding.

The last remaining quantity that we must specify is the friction ξi. Here ξi is assumed to

depend on the instantaneous configuration through [123]

ξi = ξ0 ∑
j �=i

√
| ni j | n0(Ri j), (5.35)

i.e. roughly proportional to the instantaneous contact number ni j. The specific choice with

the square root of | ni j | n0(Ri j) is made to have the function equal to zero for values of Ri j

larger than Rc. The constant ξ0 may be interpreted as the friction per contact. Although in
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principle it is possible to measure this parameter from a small scale simulation, see Padding

and Briels [45], this is statistically very demanding and we will not do so. Instead we will

adjust ξ0 in order to have the diffusion coefficient of the coarse model equal to that of the

small scale model.

Once all parameters have been calculated according to the methods presented in this sec-

tion, the rheology of the coarse method should be equal to that of the small scale model. Of

course we should not expect that the microscopic shear relaxation modulus G(t) be repro-

duced by the coarse model in all details, but the absolute values and time scales should be

roughly in agreement. For better agreement on all time scales, the coarse model should be

enriched with more detail, as for example in Eq. (5.27).

5.5 Simulations

For the microscopic molecular dynamics (MD) simulations of the star polymer melt, we used

the widely applied Kremer-Grest model with the parameter mapping for polyethylene [93]. In

brief, any pair of particles separated by a distance r interacts by a Weeks-Chandler-Andersen

(WCA) potential,

U(r) =

⎧⎨
⎩ 4ε

[(σ
r

)12 − (σ
r

)6
+ 1

4

]
for r < 21/6σ

0 for r ≥ 21/6σ ,
(5.36)

with ε/kB = 448 K and σ = 0.51 nm. Bonds between adjacent beads in a chain are modelled

by a finitely extensible nonlinear elastic (FENE) potential,

U(r) =

⎧⎪⎨
⎪⎩

− 1
2 kR2

0 ln

[
1−

(
r

R0

)2
]

for r < R0

∞ for r ≥ R0,

(5.37)

with k = 30ε/σ2 and R0 = 1.5σ . All particles have the same mass, m = 38.6 g/mol.

The simulations were run in Gromacs 4.6 [141], using the leap-frog stochastic dynamics

integrator with a time step of 1.6 fs. This algorithm discretizes the Langevin equation of

motion for particle i,

m�̈xi =−∇iU − γm�̇xi +�fi(t), (5.38)
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with total potential energy U , a frictional relaxation time of γ−1 = 3.2 ps and a Markovian

random force �fi sampled from a Gaussian distribution. The friction and random forces collec-

tively act as a thermostat, set by the fluctuation-dissipation theorem to maintain a temperature

of 448 K.

The simulation box contained 300 star polymers, each consisting of three arms of 35

beads – corresponding to approximately one entanglement length – connected to a central

bead. The 31 800 beads were confined in a cubic simulation box with periodic boundary

conditions, at a bead number density of 0.85σ−3. Initial boxes were created by inserting

randomly generated chains at random positions in the box, taking care to avoid too large

overlaps. The box was then relaxed by energy minimization, followed by an equilibration

run of typically 108 MD steps. Production runs to collect data for analysis lasted about 108

MD steps each. In several simulations the polymer centers of mass (COM) were frozen by

using rigid body translations to move their COMs back to their original positions after every

integration step.

RaPiD simulations were also done in cubic boxes with edges of length equal to 17.06nm,

and containing 300 particles.

5.6 Results

In order to appreciate the character of the forces on centers of mass in a star polymer melt,

we present in Fig. 5.1 a time sequence of the force in x-direction on the center of mass of

a particular star polymer in a melt in which the centers of mass of all stars were fixed. The

initial configuration was taken from an equilibrium simulation with all degrees of freedom,

including those of the centers of mass, free to move. It is seen that the instantaneous force

fluctuates between −2000 pN and +2000 pN. The average is equal to 21.1 pN. Obviously it

will be very difficult to extract the average forces from our simulations. This can be appreci-

ated even better from a glance of Fig. 5.2. In this figure we have plotted the average forces in

x, y, and z-directions for all 300 stars in the box with frozen center of mass, calculated from

the first 7.5×107 time steps after equilibration, along the horizontal axis, and those from the

next 7.5×107 time steps along the vertical axis. Equilibration lasted 3×107 time steps. Av-

eraging was done by picking frames every hundredth time step and calculating the mean. In

93



5. COARSE GRAIN FORCES IN STAR POLYMER MELTS

4e-08 8e-08
Time   [s]

-4000

-2000

0

2000

4000

Fo
rc

e 
  [

pN
]

Figure 5.1: Time sequence of forces in x-direction on one particular star polymer in a melt

with all centers of mass fixed.

the ideal case Fig. 5.2 would have been a straight line along the diagonal with positive slope.

It is clear that the data still scatter substantially. Notice that for the final averages, based on

1.5×108 time steps, the scattering is less by a factor of
√

2.

Before discussing the average forces, let us take a look at Fig. 5.3, in which n0(r) is

plotted against the distance between two stars. The inset shows the results for five different

values of Δ in Eq. (5.29). Obviously, n0(r) increases with increasing values of Δ. In the main

part of the plot, n0(r)/n0(0) is plotted for all five values of Δ. Clearly all results are nearly

equal, indicating that our normalized definition of the contact numbers ni j is rather insensitive

to the precise value of Δ. Also shown in this figure is the analytic representation that we fitted

to the experimental data:

n0(r) = exp{−(
r/Rg

1.357
)2}. (5.39)

The Gaussian form was taken from Akkermans and Briels [49]. From the plot it seems safe

to use a cutoff value Rc = 3Rg. This is somewhat larger than the 2.5Rg used in previous

applications of the RaPiD model.

We now consider the description of the average forces by means of the extended Flory-

Huggins model Eq. (5.19). In a first step we ignore the repulsive contributions, which leaves

us with the pure Flory-Huggins free energy ΦFH and its adjustable parameters, p, χ , ρmax, Rs
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Figure 5.2: All 900 Gromacs forces on the centers of mass of 300 star polymers in a melt

with fixed centers of mass. Values along the vertical axis are averaged over 7.5× 107, time

steps of length Δt = 1.2×108 fs, while those along the horizontal axis are averaged over the

preceding 7.5×107 time steps.

and Rc. On the basis of their physical meanings, n0(r) and ω(r) must have very similar cutoff

radii. In order to restrict the number of adjustable parameters we therefore choose Rc = 3Rg

also for the weight function. Finally we choose Rs = 1Rg in order to have a smooth weight

function as shown in Fig. 5.4

We are now left with three adjustable parameters. Since there are no attractive forces in

our Gromacs simulation and the repulsions are very steep, almost all of ΦFH must come from

entropy, which means that χ must be zero or slightly negative. Moreover, writing ρmax = rρ̄ ,

with ρ̄ the overall number density, r must take values between 1.5 and 2. This follows from

the fact that the density in the Kremer-Grest system is roughly half the melt density. Finally,

also p can be roughly estimated according to p = 3parm −2, with

parm =
〈R2

arm〉
b2

=
〈R2

arm〉
C2

∞l2
, (5.40)

where Rarm is the branch-end distance of one arm. From our simulations we found
√

〈R2
arm〉=

6.8σ . Using the values l = 0.97σ and C∞ = 1.80 from the paper of Kremer and Grest [93]
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Figure 5.3: Average numbers of contacts n0(r) as a function of the distance between two stars

for several values of Δ in Eq. (5.29). The black line is a fit to the data.

we get p � 43. A somewhat smaller value of p � 40 is obtained when the star is treated as a

linear chain with Rg = 4.33σ .

In order to determine ρmax, χ and p we have performed a sequence of optimizations. We

fixed ρmax to some particular value and for a sequence of values for χ we minimized

D2 =
2700

∑
i=1

(Fi
FH −Fi

G)
2 (5.41)

by adjusting p. Here Fi
FH is the ith force obtained with the Flory-Huggins model and Fi

G the ith

force obtained with the Gromacs data. The resulting values of p as a function of χ are shown

in Fig. 5.5 for several values of ρmax. The corresponding qualities of fit FQ = Dmin/
√
〈F2

G〉,
with D2

min being the minimum of D2 and 〈F2
G〉 the average of all 2700 forces squared obtained

from the Gromacs simulations with frozen centers of mass (three boxes with 300 particles

each), are shown in Fig. 5.5. Clearly, with all values of ρmax, the quality of fit becomes bad

for positive Flory-Huggins parameters χ . Moreover, if one wants the number of Kuhn lengths

p to be around 40, unrealistically large values of ρmax are needed with decreasing values of

χ . The only physically reasonable choice of parameters, still with a favourable value of FQ,

seems to be ρmax = 1.9ρ̄ , χ = 0 and p = 43, in close agreement with the initial estimates.

With ΦFH(R) now defined, we turn our attention to φ rep(Ri j) in Eq. (5.19). Assuming a
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Figure 5.4: Weight function w(r) used to calculate local volume fraction (Eq. (5.18)).

Gaussian function with two parameters

φ rep(Ri j) = aexp{−(Ri j/b)2}. (5.42)

and replacing the Flory-Huggins forces in Eq. (5.41) by those obtained with the extended

Flory-Huggins model, we again minimized D2, with fixed Flory-Huggins parameters, and

found a= 1.194kBT and b= 1.283Rg with a quality if fit FQ= 0.78. To appreciate this result,

we have plotted in Fig. 5.6 left panel the model forces Fi
model against the Gromacs forces

Fi
G. For comparison we show in Fig. 5.6 right panel the same plot, with the model forces

calculated using the pair potential of Löwen, Likos and co-workers. Clearly the extended

Flory-Huggins model represents the actual average forces much better than the pair model.

In Fig. 5.7 we show the radial distribution functions obtained with the various models. As

is clear from the figure, the extended Flory-Huggins model describes the Gromacs data very

well, while the pair potential model is only marginally successful.

We now turn to the transient forces. As we mentioned in the previous section, we will

use the equipartition theorem Eq. (5.31) to calculate α(Ri j) from the Gromacs data. In de-

riving Eq. (5.31) from the probability distribution Eq. (5.22), it was assumed that ni j can

take negative values, as they can do in the coarse model. With the definition of ni j given in

Eq. (5.29), however, the Gromacs ni j can only take positive values. For small values of Ri j

this is actually not a restriction, because indeed the ni j are Gaussian distributed around their
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Figure 5.5: Left panel: optimal number of Kuhn lengths as a function of χ for various values

of r = ρmax/ρ̄ . Right panel: qualities of fit FQ (multiplied by 10) corresponding to the curves

in the left panel.

mean values n0(Ri j). With increasing values of Ri j, the distribution of the Gromacs ni j be-

gins to resemble a Poisson distribution, with the result that α(Ri j) cannot be calculated from

the equipartition theorem anymore. In Fig. 5.8 left panel we have plotted n0 together with

n0 +
√

kBT/α and n0 −
√

kBT/α as a function of r. At a distance somewhat larger than Rg,

n0−
√

kBT/α drops below zero. This is a clear indication that the Gaussian assumption does

not apply anymore to the distribution of Gromacs contact numbers. At the same time, the

statistics is rather bad for small distances since only very few pairs exist at these distances.
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Figure 5.6: Left panel: all 2700 forces on the center of mass of 900 star polymers in 3

boxes of 300 star polymers each, calculated with the extended Flory-Huggins model, along

the vertical axis, and averaged over a Gromacs run with fixed centers of mass of 1.5× 108

time steps along the horizontal axis. Right panel: same as in left panel with extended Flory-

Huggins forces replaced by pair forces from reference [131].

We therefore decided to take for α its value at r = Rg. In Fig. 5.8 right panel we have plotted

the radial contact number density 4πr2ρg(r)n0(r) as a function of the distance to a star in the

origin. Clearly most contacts exist with the stars at distances between one and two Rg. This

corroborates our choice to use α = α(Rg). The values of α(r) are shown in Fig. 5.9, together

with a fit α(r)� 1.94+2.168(r/Rg)
2.12, from which we obtain α(Rg) = 4.0.

The final two parameters to be calculated are ξ0 and τ . As already mentioned in the

previous section, we will use Eq. (5.33) to calculate τ . The left hand of this equation will be

called C(t). Before extracting τ , we must decide about the time scale on which we should

calculate C(t). According to our general picture of the dynamics of the stars, the arms relax

towards equilibrium dictated by the collection {n0(Ri j)}. These numbers will have changed,

however, as soon as all stars have diffused appreciably, let’s say over distances of about

0.1 ∼ 0.2Rg. From our Gromacs data we found that such displacements correspond to about

0.5 ns. In Fig. 5.10 we have plotted C(t) for times up to 1 ns. We observe two exponential

decays, the first of which corresponds to our τ . From a fit with two exponents we obtain
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Figure 5.7: Radial distribution function for centers of mass, obtained from Gromacs simula-

tion (black line), from RaPiD simulation (red line circles) and from a simulation (blue line

square) with the pair potential from reference [131].

C(t) = 0.7762× e(−t/0.12×10−9) +0.14× e(−t/3.5×10−9) and so τ = 0.12 ns.

The friction per contact, ξ0, is extremely difficult to measure from small scale simula-

tions. We therefore choose to follow a pragmatic route by adjusting ξ0 until the progressive

diffusion coefficient

D(t) =
1

6t
〈(�Ri(t)−�Ri(0))

2〉. (5.43)

is well represented by the coarse model. In Fig. 5.11, D(t) is plotted as a function of time,

once using RaPiD data and once using Gromacs data. With ξ0 = 1.06×10−11 Kg/s the final

diffusion coefficient D = limt→∞ D(t) is well represented by the RaPiD model. Of coarse at

the very early times RaPiD cannot reproduce the correct dynamics because it is driven by a

sequence of processes at time scales that have been replaced by a Markovian friction plus

corresponding noise. Also at the intermediate times RaPiD is not very successful.

At this point, all parameters of the RaPiD model have been calculated from an underlying

small scale Gromacs simulation. If the model captures the real physics it should now repro-

duce all physical properties without any additional parameter tuning. Therefore we calculated
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Figure 5.8: Left panel: average contact number n0(r) as a function of r (black line)

and n0(r)±σn with σn =
√

kBT/α (dotted lines). Right panel: total number of contacts

4πr2ρ̄g(r)n0(r) as a function of r.

the shear relaxation modulus

G(t) =
V

kBT
〈σxy(t)σxy(0)〉, (5.44)

with σxy being the xy element of the stress tensor calculated according to

σxy =− 1

V ∑
i j
(Ri,x −R j,x)Fi j,y. (5.45)

In the last equation, Ri,x is the x-coordinate of the position vector of particle i and Fi j,y is
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Figure 5.9: Strength of transient forces α as a function of r.

the y-component of the force exerted by particle j on particle i. The results are shown in

Fig. 5.12. Clearly, the results obtained with the Gromacs data are very noisy. This is a well

known fact with all small scale simulations, which is due to the fact that the stress-stress

auto-correlation function in Eq. (5.46) is calculated from just one single, heavily fluctuating

quantity, as opposed to auto-correlation functions of single particle properties, which fluctuate

less wildly and moreover may be averaged over all particles in the box. The shear relaxation

modulus obtained with the coarse model ignoring the transient forces, by always putting ni j =

n0(Ri j), reproduces the Gromacs data at long times surprisingly well. At intermediate times,

clearly the transient forces are needed to reproduce the Gromacs G(t). The full RaPiD curve

roughly exhibits two relaxations. This should not be surprising since with σxy = σ th
xy +Δσxy

and 〈Δσxy(t)σ th
xy(0)〉= 〈Δσxy(0)σ th

xy(t)〉= 0 we obtain

G(t) =
V

kBT
{〈σ th

xy(t)σ th
xy(0)〉+ 〈Δσxy(t)Δσxy(0)〉}. (5.46)

Here σ th
xy is the xy-stress contribution from the thermodynamic forces and Δσxy the remaining

part, contributed by the transient forces. The vanishing of the cross correlations 〈Δσxy(t)σ th
xy(0)〉

is due to the fact that with every configuration of the center of mass the transient forces fluctu-

ate around zero. Even when the order of magnitude and the covered time regimes are correct

it is clear that the model is too simple to capture all the details of the shear relaxation modu-
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Figure 5.10: Decay curves C(t) (left hand side of Eq. (5.33)) as a function of time lapse since

freezing the centers of mass motion. The dashed line indicates the time when in the free box

the centers of mass have moved over 0.15 Rg.

lus at intermediate times. In previous applications of the RaPiD model, we have shown that

with some simple adjustments, like in Eq. (5.27) or allowing for deformation of the coarse

particle [127], very good results may be obtained. Here we have shown that the successes of

the RaPiD model are not just sheer luck, but that all parameters indeed have a well defined

physical meaning. Our limitations in this paper have basically been due to difficulties to run

sufficiently long small scale simulations.

5.7 Summary and conclusions

We have presented a method to calculate all functions and parameters in the responsive par-

ticle model (RaPiD) from an underlying small scale simulation. RaPiD is a coarse grained

model in which every polymer is represented by a single point particle dressed with addi-

tional variables to describe the dominant effects of the eliminated degrees of freedom. In

order to conserve both the thermodynamic and the dynamic properties of the original model,

forces are considered to consist of two contributions. The first contribution is taken to be the

average forces for given, instantaneous positions of the particles. The remaining contribution
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Figure 5.11: Progressive diffusion coefficient as a function of time from Gromacs run (black

line) and from RaPiD run (symbols).

is modelled by an additional set of dynamical variables for each pair within a certain cutoff

distance.

The average forces are taken to derive from a potential with implicit many-body contribu-

tions based on the Flory-Huggins model, to properly take care of the entropy of the eliminated

degrees of freedom. With a previously suggested definition of local volume fractions all pa-

rameters in the model may be estimated on the basis of their physical meaning. With only

very small tuning of these parameters around the estimated values very good agreement be-

tween actual and model forces was obtained. Similar agreement could not be obtained with

the best effective pair potential model available. In order to treat the pair model on the same

footing as ours, we have optimised all parameters in the pair model to achieve good agree-

ment with the actual forces, but this led to unphysical results. We conclude that many-body

terms are an important ingredient in coarse grain models for polymer melts and solutions.

The fluctuating forces are larger than the average forces by two orders of magnitude. This

fact alone is enough to conclude that it will be impossible to describe both the thermodynamic

properties and the dynamic properties correctly on the basis of a simple conservative force-

field involving only the positions of the polymers. In the RaPiD model the fluctuating forces

are described by so called contact numbers, whose dynamics brings into the simulation the
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Figure 5.12: Shear relaxation modulus from Gromacs run (black line) and from RaPiD run

(red line); the green line represents the contribution from the conservative forces.

memory effects resulting from the elimination of the internal degrees of freedom of the poly-

mers. We have measured the root mean square deviations from their equilibrium values and

the corresponding decay times of these contact numbers. This left us with one parameter

that we adjusted to have the diffusion coefficient correct. The shear relaxation modulus as a

function of time was next found to be correctly reproduced by the coarse model, albeit not in

all its details.

In summary we conclude that splitting forces into average forces and transient forces is

a very promising concept. Average forces require many-body contributions, which can be

modelled very well. The present implementation of the transient forces performs rather well.

Our calculations have revealed, however, that there is still quite some room for amelioration

of the modelling of the transient forces. We mention three possible ways to attack this prob-

lem. First, it is conceivable that, depending on the application, better definitions exist for the

variables ni j. Second, other distributions than the Gaussian distribution for the ni j should be

considered. Finally, ways to implement a range of characteristic times into the dynamics of

the ni j should be developed; one such way was already implemented by Sprakel et al. [138],

others may be conceivable.
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In this thesis the properties of star and linear polymer melts have been studied by coarse

grained simulations. Depending on the architecture, polymers are observed to show differ-

ent dynamical and rheological properties. The aim here is to reveal how architecture affects

polymer behaviour. The results obtained from this work will not only contribute to a fun-

damental understanding of the character of star polymeric systems, but also possibly help to

design industrial architecturally complex polymer materials with specific macroscopic prop-

erties. Simulations are carried out with coarse-grained method at multiple levels: in Chapters

2 through 4 the mesoscale Twentanglement model introduced by Padding and Briels, where

each polymer is represented by a chain of consecutive soft blobs; in Chapter 5 both Molecular

Dynamics (MD) simulations at atomistic level and highly coarse grained Responsive Particle

Dynamics (RaPiD) simulations, in which a polymer is reduced to a single particle.

In Chapter 2, the Twentanglement algorithm for mesoscopic simulations of polymers is

extended to study three-armed polymers. This technique simulates polymers as short chains

of soft blobs, representing polymer segments, with bond crossings prevented by uncrossibil-

ity constraints. After defining the linking structure between branch points and linear arms, a

test was conducted on two linear chains connected by a branch point to ensure that the en-

tanglements can slip over the branch point from one arm to the other. Additional geometric

checks were implemented for entanglement points slipping over a branch point connecting

three arms. In this chapter, a star with three moderately entangled linear arms is studied as an

example to test the method. The segmental diffusions are calculated, where it is found that

the branch point diffuses the slowest and the free ends move the fastest. The same trend is

observed from the calculation of Rouse mode coordinates. The diffusive behaviour of three-

armed stars is found to be close to that of a linear chain with the same molecular weight, while

in terms of the rheology the star polymer behaves like its longest linear backbone chain.

Stars with various arm lengths are studied by Twentanglement model in Chapter 3. Scal-

ing laws for linear chain diffusion and zero shear viscosity as functions of molecular mass

are found in quantitative agreement with the experimental observations and theoretical pre-

dictions. These results underline that the length of the linear polymers and stars studied in
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this model are in the crossover from the Rouse model to reptation theory. Analysis of the

dynamical and rheological properties of melts of star polymers are made and compared with

those of linear polymers. By increasing the arm length, the star polymers gradually show a

slower diffusion than both matching linear chains, as well as a delayed relaxation. The differ-

ences between linear and star viscoelastic behaviour can also be seen from their storage and

loss moduli; linear chains show a wider wedge than the corresponding star polymer after the

crossing frequency of those two curves. Furthermore, in this chapter the zero shear viscosities

of star melts are calculated from their stress moduli. The observed exponential scaling law

in the arm molecular mass of star polymer shows a reasonable agreement with experimental

and theoretical investigations for very large star polymers presented in the literature.

In Chapter 4, the dynamics and viscoelastic behaviour of melts of asymmetric three-

armed polymers has been simulated by the TWENTANGLEMENT method. A short side arm,

well below the entanglement length, shows already a notable change in the properties of

the melt. The presence of this agile side chain allows for relatively fast local stress relax-

ations and dilates the tube constraining the backbone. For long side chains, approaching the

entanglement length, the relaxation dynamics of the melt shows the hall-marks of the arm

retraction process. The rarity of this process, occurring about once per 0.4 μs per arm, sets

the slowest time scale of the melt.

The investigation of polymer systems at different time and length scales requires different

coarse graining levels. Chapter 5 presents a highly coarse grained model, Responsive Par-

ticle Dynamics (RaPiD), where each polymer is represented by one particle. In this model,

forces act on the centers of mass of each polymer. Those coarse grained forces can be split

into conservative interactions described by the extended Flory-Huggins potential, ‘transient’

forces depending on the contacts between polymers to represent entanglement effects, and

random thermal forces. In this work, instead of the top-down approach currently employed

to tune the RaPiD model, the parameterization is obtained in a bottom-up approach as well

as considerations of polymer concepts in physics. The Kremer-Grest model is applied for

the atomistic or microscopic simulation of three-armd star polymers with approximately one

entanglement mass per arm. The radial distribution function generated by RaPiD reproduces

the small scale simulation data very well, which indicates that the extended Flory-Huggins

potential describes the statistical properties of this star system very well. The diffusion co-
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efficient in RaPiD is tuned by adjusting the friction per contact. The shear stress modulus

as calculated in RaPiD, without adjusting additional parameters, is in reasonable agreement

with the small scale simulations. This work proves that a many-body model is capable of

describing the system dynamics very well. Suggestions on how to improve the agreement are

made at the end of this chapter.
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In dit proefschrift zijn de eigenschappen van smelten van lineaire en ster-vormige polymeren

bestudeerd met grof-korrelige simulaties. Polymeren vertonen verschillend dynamisch en

reologisch gedrag afhankelijk van hun architectuur. Het doel hier is zichtbaar maken hoe

architectuur het polymeergedrag beı̈nvloedt. De resultaten verkregen in dit werk zullen niet

alleen bijdragen aan een fundamenteel begrip van het karakter van ster-polymeer systemen,

maar mogelijk ook helpen bij het ontwerpen van industriële architectonisch complexe poly-

meermaterialen met specifieke macroscopische eigenschappen. Simulaties zijn uitgevoerd

met grof-korrelige methodes op meerdere niveaus: in Hoofdstuk 2 tot en met 4 het TWEN-

TANGLEMENT model geı̈ntroduceerd door Padding en Briels, waar elk polymeer wordt gerep-

resenteerd door een keten van zachte ‘blobs’; in Hoofdstuk 5 zowel Moleculaire Dynamica

(MD) simulaties op atomair niveau en extreem grof-korrelige Responsive Particle Dynamics

(RaPiD) simulaties, waarin een polymeer gereduceerd is tot een enkel deeltje.

In Hoofdstuk 2 wordt het TWENTANGLEMENT algoritme voor mesoscopische simulaties

van polymeren uitgebreid voor de bestudering van drie-armige polymeren. Deze techniek

simuleert polymeren als korte ketens van zachte ”blobs”, die polymeersegmenten represen-

teren, met bindingsdoorsnijdingen voorkomen door niet-doorsnijdings restricties. Nadat de

verbindingsstructuur tussen een vertakkingspunt en lineaire armen is gedefinieerd, werd een

test uitgevoerd op twee lineaire ketens verbonden door een vertakkingspunt om er zeker van

te zijn dat de ‘entanglements’ (d.w.z. verknopingspunten waar twee polymeren aan elkaar

haken) over een vertakkingspunt kunnen glijden van de ene arm naar een andere. Aanvul-

lende geometrische testen werden geı̈mplementeerd voor verknopingspunten die glijden over

een vertakkingspunt verbonden met drie armen. In dit Hoofdstuk wordt een ster met drie

matig verknoopte armen bestudeerd als een voorbeeld om de methode te testen. De diffusies

van segmenten zijn berekend, waarbij gevonden wordt dat het vertakkingspunt het traagst

diffundeert en de vrije einden het snelst. De zelde trend wordt gezien in de berekening van

Rouse mode coordinaten. Het diffusieve gedrag van drie-armige sterren blijkt dicht te liggen

bij dat van een lineaire keten met hetzelfde moleculaire gewicht, terwijl in termen van de

reologie het ster-polymeer zich gedraagt als zijn langste lineaire ruggengraat.
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Sterren met verscheidene armlengtes nabij de reptatie-overgang worden bestuurd met het

TWENTANGLEMENT model in Hoofdstuk 3. Schalingswetten voor de diffusie en viscositeit

van lineaire ketens als functie van de moleculaire massa blijken in quantitatieve overeenstem-

ming met experimentele observaties en theoretische voorspellingen. Deze resultaten onder-

strepen dat de lengte van de lineaire polymeren en sterren die met dit model bestudeerd wor-

den in het overgangsgebied liggen van het Rouse model naar reptatie-theorie. Analyses van

de dynamische en reologische eigenschappen van smelten van ster-polymeren zijn gemaakt

en vergeleken met met die van lineaire polymeren. Door de armlengte te vergroten, vertonen

de ster-polymeren geleidelijk een tragere diffusie dan beide overeenstemmende lineaire poly-

meren, alsmede een vertraagde relaxatie. De verschillen tussen lineair en ster visco-elastisch

gedrag kunnen ook worden gezien in hun opslag en verlies moduli; lineare ketens vertonen

een bredere wig dan de overeenstemmende ster-polymeer na de kruisingsfrequentie van deze

twee curves. Bovendien, in dit Hoofdstuk zijn de viscositeiten van ster smelten (in de limiet

van oneindig trage afschuifstroming) berekend uit hun spanningsmoduli. De waargenomen

exponentiële schalingswet met de moleculaire massa van de arm van het ster-polymeer ver-

toont een redelijke overeenkomst met experimentele en theoretische onderzoekingen voor

zeer grote ster-polymeren beschreven in de literatuur.

In Hoofdstuk 4 worden asymmetrische ster-polymeren bediscussieerd waarvan één arm

verschilt in lengte van de andere armen. We gebruiken de TWENTANGLEMENT techniek

zoals beschreven in Hoofdstuk 2. Twee types asymmetrische sterren worden beschouwd: één

heeft twee korte lineaire ruggengraat-armen en één langere asymmetrische arm; terwijl de

ander twee relatief lange ruggengraat-armen en een korte asymmetrische arm bevat. Sruc-

turele verschillen veroorzaakt door de lengte van de asymmetrische arm zijn bestudeerd door

middel van hun autocorrelatiefuncties. Zoals verwacht, the langere arm vereist een langere

relaxatietijd. De dynamica en ster relaxatie zijn verder bestudeerd door de vergelijking met

overeenkomstige lineaire en symmetrische ster polymeren met vergelijkbare grootte. Door de

lengte van asymmetrische armen te variëren vertonen de asymmetrische sterren een gedrag

tussen die van de lineaire ketens en symmetrische sterren. Een duidelijkere trend wordt gezien

in de relaxatie van asymmetrische sterren met twee lange ruggengraat armen; die sterren re-

laxeren veel trager dan alle overeenkomstige lineaire ketens. We verwachten betere statis-

tische resultaten te vinden met een langere simulatietijd voor lineaire of ster polymeren met
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hogere moleculaire massa.

Het onderzoek van polymerensystemen op verschillende tijd- en lengteschalen vereist

verschillende niveaus van grofkorreligheid. Hoofdstuk 5 presenteert een zeer grofkorrelig

model, Responsive Particle Dynamics (RaPiD), waar elk polymeer is weergegeven door één

deeltje. Krachten werken op de massamiddelpunten van elk polymeer. Deze grofkorrelige

krachten kunnen worden gesplitst in conservatieve interacties beschreven door de uitgebreide

Flory-Huggins potentiaal, ”kortstondige” krachten afhankelijk van de contacten tussen poly-

meren om verknopingseffecten weer te geven, en willekeurige thermische krachten. In dit

werk, in plaats van de ‘top-down’ (van boven naar beneden) aanpak die nu wordt gebruikt

voor de parameterisering van RaPiD, wordt de parametrisering verkregen in een ‘bottom-up’

(van onder naar boven) aanpak zowel als overwegingen van polymeerconcepten in de natu-

urkunde. Het Kremer-Grest model is gebruikt voor de atomaire of microscopische simulatie

van drie-armige ster-polymeren met ongeveer één verknopingsmassa per arm. De radiële-

distributiefunctie gegenereerd met RaPiD reproduceert de kleinschalige simulatiedata erg

goed, wat er op wijst dat de uitgebreide Flory-Huggins potentiaal de statistische eigenschap-

pen van dit ster-systeem zeer goed beschrijft. De diffusiecoefficient in RaPiD is gekozen

door de wrijving per contact aan te passen. The afschuifspanning modulus zoals berekend in

RaPiD, zonder aanpassing van toegevoegde parameters, is in redelijke overeenstemming met

de kleinschalige simulaties. Dit werk bewijst dat een veel-deeltjes model in staat is om de

systeem dynamica zeer goed te beschrijven. Suggesties om deze overeenkomst te verbeteren

worden gegeven aan het eind van dit Hoofdstuk .
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